




免费预览已结束,剩余7页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1讲几何证明选讲考情解读本讲主要考查相似三角形与射影定理,圆的切线及圆内接四边形的性质与判定定理,圆周角定理及弦切角定理,相交弦、切割线、割线定理等,本部分内容多数涉及圆,并且多是以圆为背景设计的综合性考题,考查逻辑推理能力1(1)相似三角形的判定定理判定定理1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似判定定理2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似判定定理3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似(2)相似三角形的性质相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方(3)直角三角形的射影定理直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项2(1)圆周角定理圆上一条弧所对的圆周角等于它所对的圆心角的一半(2)圆心角定理:圆心角的度数等于它所对弧的度数3(1)圆内接四边形的性质定理圆的内接四边形的对角互补;圆内接四边形的外角等于它的内角的对角(2)圆内接四边形判定定理如果一个四边形的对角互补,那么这个四边形的四个顶点共圆4(1)圆的切线的性质定理圆的切线垂直于经过切点的半径(2)圆的切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线(3)弦切角定理弦切角等于它所夹的弧所对的圆周角(4)相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等(5)切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项5证明等积式成立,应先把它写成比例式,找出比例式中给出的线段所在三角形是否相似,若不相似,则进行线段替换或等比替换6圆幂定理与圆周角、弦切角联合应用时,要注意找相等的角,找相似三角形,从而得出线段的比由于圆幂定理涉及圆中线段的数量计算,所以应注意代数法在解题中的应用热点一相似三角形及射影定理例1如图所示,在rtabc中,acb90,cdab于d,且adbd94,则acbc的值为_答案32解析方法一因为acb90,cdab于d,所以由射影定理,得ac2adab,bc2bdab.所以()2.又adbd94,所以acbc32.方法二因为adbd94,所以可设ad9k,bd4k,kr.又acb90,cdab于d,由射影定理,得cd2adbd,所以cd6k.由勾股定理,得ac3和bc2,所以acbc32.思维升华含斜边上的高的直角三角形是相似三角形中的基本图形,本题中出现多对相似三角形,这为解决问题提供了许多可以利用的有效信息另外,直角三角形的射影定理是相似三角形的性质在直角三角形中的一个经典应用,在类似问题中应用射影定理十分简捷 如图,bd,aebc,acd90,且ab6,ac4,ad12,be的长为_答案4解析ac4,ad12,acd90,cd2ad2ac2128,cd8.又aebc,bd,abeadc,be4.热点二相交弦定理、割线定理、切割线定理、切线长定理的应用例2如图所示,ab为o的直径,p为ba的延长线上一点,pc切o于点c,cdab,垂足为d,且pa4,pc8,则tanacd和sin p的值为_答案,解析连接oc,bc.因为pc为o的切线,所以pc2papb.故824pb,所以pb16.所以ab16412.由条件,得pcapbc,又pp,所以pcapbc.所以.因为ab为o的直径,所以acb90.又cdab,所以acdb.所以tanacdtan b.因为pc为o的切线,所以pco90.又o直径为ab12,所以oc9,po10.所以sin p.思维升华(1)求非特殊角的函数值的关键是将这些角归结到直角三角形中,利用直角三角形的边之比表示出角的三角函数值,然后根据已知条件将这些比值转化为已知线段的比值(2)线段成比例的证明,一般利用三角形相似进行转化,在圆中的相关问题,应注意灵活利用圆中的切割线定理、相交弦定理等求解相关线段的长度或构造比例关系 (2013广东)如图,ab是圆o的直径,点c在圆o上,延长bc到d使bccd,过c作圆o的切线交ad于e.若ab6,ed2,则bc_.答案2解析c为bd中点,且acbc,故abd为等腰三角形abad6,ae4,de2,又ac2aead4624,ac2,在abc中,bc2.热点三圆的有关性质的综合应用例3如图,abc的角平分线ad的延长线交它的外接圆于点e.若abc的面积sadae,则bac的大小为_答案90解析由已知条件,可得baecad.因为aeb与acd是同弧所对的圆周角,所以aebacd.故abeadc.所以,即abacadae.又sabacsinbac,且sadae,故abacsinbacadae,则sinbac1.又bac为abc的内角,所以bac90.思维升华高考中对几何证明的命题集中在圆和三角形、四边形相结合的综合性题目上,这类试题往往要综合运用多个定理和添加一定的辅助线才能解决已知圆的切线时,第一要考虑过切点和圆心的连线得直角;第二应考虑弦切角定理;第三涉及线段成比例或线段的积时要考虑切割线定理同时注意四点共圆的判定及性质的应用 (2013湖北)如图,圆o上一点c在直径ab上的射影为d,点d在半径oc上的射影为e,若ab3ad,则的值为_答案8解析易知cdoced,设圆o半径为r,则adr,odr,cd2r2(r)2r2,cer,eor,故8.1证明两角相等,关键是确定两角之间的关系,多利用中间量进行转化,可以通过证明三角形相似或全等,利用平行线的有关定理,如同位角相等、内错角相等等,也可利用特殊平面图形的性质,如利用等腰三角形的两个底角相等、圆中同弧或等弧所对的圆周角相等寻找中间量进行过渡2证明或寻找圆内接图形中的角之间的关系,除了注意平面图形中的垂直、平行关系之外,还应注意弦切角、同弧所对角等性质的灵活运用真题感悟1(2014湖南)如图,已知ab,bc是o的两条弦,aobc,ab,bc2,则o的半径等于_答案解析如图,延长ao交圆o于点d,连接bd,则abbd.在rtabd中,ab2aead.bc2,aobc,be.ab,ae1,ad3,r.2(2014广东)如图,在平行四边形abcd中,点e在ab上且eb2ae,ac与de交于点f,则_.答案9解析在平行四边形abcd中,因为eb2ae,所以,故3.因为aecd,所以aefcdf,所以()29.押题精练1.如图,在直角梯形abcd中,dcab,cbab,abada,cd,点e,f分别为线段ab,ad的中点,则ef_.答案解析连接de,由于e是ab的中点,故be.又cd,abdc,cbab,四边形ebcd是矩形在rtade中,ada,f是ad的中点,故ef.2(2014陕西)如图,abc中,bc6,以bc为直径的半圆分别交ab,ac于点e,f,若ac2ae,则ef_.答案3解析aa,aefacb,aefacb,2,ef3.3(2014天津改编)如图,abc是圆的内接三角形,bac的平分线交圆于点d,交bc于点e,过点b的圆的切线与ad的延长线交于点f.在上述条件下,给出下列四个结论:bd平分cbf;fb2fdfa;aecebede;afbdabbf.则所有正确结论的序号是_答案解析对于,bf是圆的切线,cbfbac,41.又ad平分bac,12.又23,34,即bd平分cbf,故正确;对于,根据切割线定理有fb2fdfa,故正确;对于,32,bedaec,bdeace.,即aedebece,故错误;对于,41,bfdafb,bfdafb,即afbdabbf,故正确(推荐时间:40分钟)1(2014湖北)如图,p为o外一点,过p点作o的两条切线,切点分别为a,b.过pa的中点q作割线交o于c,d两点若qc1,cd3,则pb_.答案4解析由切割线定理得qa2qcqd4,解得qa2.则pbpa2qa4.2(2014重庆)过圆外一点p作圆的切线pa(a为切点),再作割线pbc依次交圆于b,c.若pa6,ac8,bc9,则ab_.答案4解析由切割线定理得pa2pbpcpb(pbbc),即62pb(pb9),解得pb3(负值舍去)由弦切角定理知pabpca,又apbcpa,故apbcpa,则,即,解得ab4.3如图,四边形abcd是圆o的内接四边形,延长ab和dc相交于点p.若,则的值为_答案解析pp,pcbpad,pcbpad.,.4如图,已知ab和ac是圆的两条弦,过点b作圆的切线与ac的延长线相交于点d.过点c作bd的平行线与圆相交于点e,与ab相交于点f,af3,fb1,ef,则线段cd的长为_答案解析因为afbfefcf,解得cf2,所以,即bd.设cdx,ad4x,所以4x2,所以x.5.如图,在abc中,点d是ac的中点,点e是bd的中点,ae交bc于点f,则的值为_答案解析过点d作dmaf交bc于点m.点e是bd的中点,在bdm中,bffm,又点d是ac的中点,在caf中,cmmf,.6(2013广东)如图,ab是圆o的直径,点c在圆o上,延长bc到d使bccd,过c作圆o的切线交ad于e.若ab6,ed2,则bc_.答案2解析c为bd中点,且acbc,故abd为等腰三角形abad6,ae4,de2,又ac2aead4624,ac2,在abc中,bc2.7.如图,pa是圆o的切线,切点为a,pa2,ac是圆o的直径,pc与圆o交于点b,pb1,则圆o的半径r_.答案解析由切割线定理可得pa2pbpc,即pc4,所以bcpcpb3,因为ac是圆o的直径,所以abc90,所以ab2bcbp3,所以ac2bc2ab29312,即ac2,所以2r2,即r.8如图,ab,cd是圆o内的两条平行弦,bfac,bf交cd于点e,交圆o于点f,过a点的切线交dc的延长线于点p,若pced1,pa2,则ac的长为_答案解析pa是o的切线,由切割线定理得pa2pcpd.pa2,pc1,pd4.又pced1,ce2,由题意知四边形abec为平行四边形,abce2,连接bc,如图,pa是o的切线,paccba.ab,cd是圆的两条平行弦,pcacab,paccba,ac2pcab2,ac.9如图,已知ad5,db8,ao3,则圆o的半径oc的长为_答案5解析由圆的割线定理得,aeacadab,即(aooe)(aooc)ad(addb),即(3oc)(3oc)5(58),解得oc5.10如图,pa切o于点a,割线pbc经过圆心o,obpb1,oa绕点o逆时针旋转60得到od,则pd的长为_答案解析pa切o于点a,b为po的中点,aob60,pod120.在pod中,由余弦定理,得pd2po2do22podocospod414()7,故pd.11如图,ab,cd是o的两条弦,它们相交于点p,连接ad,bd,已知adbd4,pc6,则papb_.答案12解析由adbd4,得padb,又bc,所以padc,又adpcda,所以adpcda.又pc6,设pdx,由,得,解得x2或x8(舍去),即pd2,由相交弦定理,得papbpcpd6212.12.如图,rtabc中,bac90,ad是斜边bc上的高,若abac21,则adbc_.答案25解析设ack,则ab2k,bck,bac90,adbc,ac2cdbc,k2cdk,cdk,又bdbccdk,ad2cdbdkkk2,adk,adbc25.13.如图,四边形abcd中,dfab,垂足为f,df3,af2fb2,延长fb到e,使befb,连接bd,ec.若bdec,则四边形abcd的面积为_答案6解析过点e作endb交db的延长线于点n,在rtdfb中,df3,fb1,则bd,由rtdfbrtenb,知,所以en,又bdec,所以en为bcd底边bd上的高,故s四边形abcdsabdsbcdabdfbden336.14.如图,ab是圆o的直径,cdab于d,且a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年计算机科学入门考试题及答案
- 2025年茶艺师职业能力测试试卷及答案
- 2025年产品设计与开发课程考试试题及答案
- 物资设备部门管理制度
- 物资采购归档管理制度
- 特殊人才奖励管理制度
- 特殊场所规范管理制度
- 特殊工艺过程管理制度
- 特殊法人客户管理制度
- 特色高校餐饮管理制度
- 2025年烟花爆竹经营单位主要负责人模拟考试题及答案
- 租房合同到期交接协议书
- 中国废旧轮胎橡胶粉项目投资计划书
- 子宫内膜异位性疾病护理
- 人工智能芯片研究报告
- 2025贵州中考:历史高频考点
- 汽车质量意识培训
- 新疆开放大学2025年春《国家安全教育》形考作业1-4终考作业答案
- 管网工程有限空间内清淤作业检测修复安全专项施工方案
- 成本预算绩效分析实施案例
- 2025届高三语文二轮复习:典型题各个击破之表达效果类语用题型(含答案解析)
评论
0/150
提交评论