已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 2 2直接证明与间接证明 2 2 1综合法和分析法2 2 2反证法 综合法和分析法 是直接证明中最基本的两种证明方法 也是解决数学问题时常用的思维方式 2 一般地 利用已知条件和某些数学定义 公理 定理等 经过一系列的推理论证 最后推导出所要证明的结论成立 其特点是 由因导果 1 综合法 顺推证法或由因导果法 则综合法可用框图表示如下 用P表示已知条件 已有的定义 公理 定理等 Q表示所要证明的结论 3 例 已知a 0 b 0 求证a b2 c2 b c2 a2 4abc 证明 b2 c2 2bc a 0 a b2 c2 2abc 又 c2 a2 2ac b 0 b c2 a2 2abc a b2 c2 b c2 a2 4abc 4 在 ABC中 三个内角A B C对应的边分别为a b c 且A B C成等差数列 a b c成等比数列 求证 ABC为等边三角形 分析 将A B C成等差数列 转化为符号语言就是2B A C A B C为 ABC的内角 这是一个隐含条件 即A B C 180 a b c成等比数列转化为符号语言就是 此时 如果能把角和边统一起来 那么就可以进一步寻找角和边之间的关系 进而判断三角形的形状 余弦定理正好满足要求 于是 可以用余弦定理进行证明 5 证明 由A B C成等差数列 所以 由A B C为 C的内角 所以 180 由余弦定理及 可得 6 2 分析法 逆推证法或执果索因法 从要证明的结论出发 逐步寻求使它成立的充分条件 直至最后 把要证明的结论归结为判定一个明显成立的条件 已知 定理 定义 公理等 特点 执果索因 我们也可以用框图来表示分析法 7 分析法的适用范围 当已知条件与结论之间的联系不够明显 直接证明需要用哪些知识不太明确具体时 往往采用从结论出发 结合已知条件 逐步反推 寻求使当前命题成立的充分条件 8 证明 要证只需证 只需证 只需证 因为 成立所以成立 9 证明 只需证 只需证 因为和都是正数 所以要证 因为21 25成立 所以成立 10 注 反证法是最常用的间接证法 一般地 假设原命题不成立 经过正确的推理 最后得出矛盾 因此说明假设错误 从而证明了原命题成立 这样的证明方法叫做反证法 3 反证法 归谬法 11 1 反证法的步骤 否定结论 推出矛盾 肯定结论 即分三个步骤 反设 归谬 存真 反设 假设命题的结论不成立 即假定原命题的反面为真 存真 由矛盾结果 断定反设不成立 从而肯定原结论成立 归谬 从假设出发 经过一系列正确的推理 得出矛盾 12 1 直接证明有困难 正难则反 3 唯一性命题 2 否定或肯定性命题 4 至多 至少型命题 2 适宜用反证法证明的题型 13 例1 已知a 0 证明x的方程ax b有且只有一个根 证明 由于a 0 因此方程至少有一个根x b a 如果方程不只一个根 不妨设x1 x2 x1 x2 是方程的两个根 所以a 0 这与已知矛盾 14 例2 设0 a b c 1 求证 1 a b 1 b c 1 c a 不可能同时大于1 4 则三式相乘 1 a b 1 b c 1 c a 又 0 a b c 1 同理 以上三式相乘 1 a a 1 b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村教育信息化背景下国家智慧教育云平台应用推广策略研究教学研究课题报告
- 2025年数字经济十年展望:大数据与云计算应用报告
- 2025重庆万州区百安坝街道办事处公益岗招聘8人(公共基础知识)测试题带答案解析
- 2026中建八局一公司校园招聘(公共基础知识)综合能力测试题附答案解析
- 2025首都师范大学第二附属中学招聘(公共基础知识)测试题带答案解析
- 2025重庆两江新区公证处驻法院调解员招聘(公共基础知识)测试题附答案解析
- 2025广东广州市花都区炭步镇人民政府招聘专职消防员1人考试历年真题汇编带答案解析
- 2025广东广州市海珠区海幢街道公益性岗位招聘1人(公共基础知识)综合能力测试题附答案解析
- 2025广东广州市海珠区新港街道市容环境卫生监督检查所招聘环卫工人8人(公共基础知识)综合能力测试题带答案解析
- 2026届秋季中国电建集团核电工程有限公司招聘280人(公共基础知识)综合能力测试题带答案解析
- 2025四川成都东部新区招聘编外工作人员29人笔试考试参考题库及答案解析
- 复方木尼孜其颗粒及去氢骆驼蓬碱:黑色素瘤治疗新视角
- 2025年劳动合同范本标准版更新
- 湖北省十一校2026届高三12月质量检测历史试卷(含答案详解)
- 辅警笔试题库及答案临沂
- 2025年榆林神木市信息产业发展集团招聘备考题库(35人)及完整答案详解
- 2024人教版三年级美术上册第三单元 第1课 班级的姓氏 教案
- 五谷粮食画课件
- 艺术体操项目介绍
- 桥梁拆除机械破碎施工方案
- 2025年中药资源考试试题及答案
评论
0/150
提交评论