




免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.3 导数的应用(二)一、选择题1函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点()a1个 b2个 c3个 d4个答案a2若函数yf(x)可导,则“f(x)0有实根”是“f(x)有极值”的 ()a必要不充分条件 b充分不必要条件c充要条件 d既不充分也不必要条件答案a3已知函数f(x)x3ax2(a6)x1有极大值和极小值,则实数a的取值范围是()a(1,2) b(,3)(6,)c(3,6) d(,1)(2,)解析f(x)3x22ax(a6),因为函数有极大值和极小值,所以f(x)0有两个不相等的实数根,所以4a243(a6)0,解得a3或a6.答案b4已知函数f(x)x3ax24在x2处取得极值,若m、n1,1,则f(m)f(n)的最小值是()a13 b15c10 d15解析:求导得f(x)3x22ax,由函数f(x)在x2处取得极值知f(2)0,即342a20,a3.由此可得f(x)x33x24,f(x)3x26x,易知f(x)在(1,0)上单调递减,在(0,1)上单调递增,当m1,1时,f(m)minf(0)4.又f(x)3x26x的图象开口向下,且对称轴为x1,当n1,1时,f(n)minf(1)9.故f(m)f(n)的最小值为13.答案:a5函数yxex,x0,4的最小值为()a0 b. c. d.解析yexxexex(x1)y与y随x变化情况如下:x0(0,1)1(1,4)4y0y0当x0时,函数yxex取到最小值0.答案a6设ar,函数f(x)exaex的导函数是f(x),且f(x)是奇函数若曲线yf(x)的一条切线的斜率是,则切点的横坐标为()aln2 bln2c. d.解析 f(x)exaex,这个函数是奇函数,因为函数f(x)在0处有定义,所以f(0)0,故只能是a1.此时f(x)exex,设切点的横坐标是x0,则ex0ex0,即2(ex0)23ex020,即(ex02)(2ex01)0,只能是ex02,解得x0ln2.正确选项为a.答案 a 7设函数f(x)ax2bxc(a,b,cr)若x1为函数f(x)ex的一个极值点,则下列图象不可能为yf(x)的图象是()解析若x1为函数f(x)ex的一个极值点,则易得ac.因选项a、b的函数为f(x)a(x1)2,则f(x)exf(x)exf(x)(ex)a(x1)(x3)ex,x1为函数f(x)ex的一个极值点,满足条件;选项c中,对称轴x0,且开口向下,a0,b0,f(1)2ab0,也满足条件;选项d中,对称轴x1,且开口向上,a0,b2a,f(1)2ab0,与图矛盾,故答案选d.答案d二、填空题8已知f(x)2x36x23,对任意的x2,2都有f(x)a,则a的取值范围为_解析:由f(x)6x212x0,得x0,或x2.又f(2)37,f(0)3,f(2)5,f(x)max3,又f(x)a,a3.答案:3,)9函数f(x)x22ln x的最小值为_解析由f(x)2x0,得x21.又x0,所以x1.因为0x1时,f(x)0,x1时f(x)0,所以当x1时,f(x)取极小值(极小值唯一)也即最小值f(1)1.答案110若f(x)x33ax23(a2)x1有极大值和极小值,则a的取值范围_解析f(x)3x26ax3(a2),由已知条件0,即36a236(a2)0,解得a2.答案(,1)(2,)11设函数f(x)ax33x1(xr),若对于任意x1,1,都有f(x)0成立,则实数a的值为_解析(构造法)若x0,则不论a取何值,f(x)0显然成立;当x0,即x(0,1时,f(x)ax33x10可化为a.设g(x),则g(x),所以g(x)在区间上单调递增,在区间上单调递减,因此g(x)maxg4,从而a4.当x0,即x1,0)时,同理a.g(x)在区间1,0)上单调递增,g(x)ming(1)4,从而a4,综上可知a4.答案4【点评】 本题考查了分类讨论思想构造函数,同时利用导数的知识来解决.12已知函数f(x)的自变量取值区间为a,若其值域也为a,则称区间a为f(x)的保值区间若g(x)xmlnx的保值区间是2,),则m的值为_解析 g(x)1,当x2时,函数g(x)为增函数,因此g(x)的值域为2mln2,),因此2mln22,故mln2.答案 ln2三、解答题13已知函数f(x)ax3bx2cx在点x0处取得极大值5,其导函数yf(x)的图象经过(1,0),(2,0)点,如图所示(1)求x0的值;(2)求a,b,c的值解析(1)由f(x)随x变化的情况x(,1)1(1,2)2(2,)f(x)00可知当x1时f(x)取到极大值5,则x01(2)f(x)3ax22bxc,a0由已知条件x1,x2为方程3ax22bxc0,的两根,因此解得a2,b9,c12.14已知函数f(x)x3ax2bxc,曲线yf(x)在点x1处的切线为l:3xy10,若x时,yf(x)有极值(1)求a,b,c的值;(2)求yf(x)在3,1上的最大值和最小值解析:(1)由f(x)x3ax2bxc,得f(x)3x22axb,当x1时,切线l的斜率为3,可得2ab0.当x时,yf(x)有极值,则f0,可得4a3b40.由解得a2,b4.由于切点的横坐标为x1,f(1)4,1abc4,c5.a2,b4,c5.(2)由(1)可得f(x)x32x24x5,f(x)3x24x4,令f(x)0,得x12,x2.当x变化时,y、y的取值及变化如下表:x3(3,2)21y00y8单调递增13单调递减单调递增4yf(x)在3,1上的最大值为13,最小值为.15设f(x)x3x22ax.(1)若f(x)在上存在单调递增区间,求a的取值范围;(2)当0a2时,f(x)在1,4上的最小值为,求f(x)在该区间上的最大值解析(1)由f(x)x2x2a22a,当x时,f(x)的最大值为f2a;令2a0,得a.所以,当a时,f(x)在上存在单调递增区间即f(x)在上存在单调递增区间时,a的取值范围是(2)令f(x)0,得两根x1,x2.所以f(x)在(,x1),(x2,)上单调递减,在(x1,x2)上单调递增当0a2时,有x11x24,所以f(x)在1,4上的最大值为f(x2),又f(4)f(1)6a0,即f(4)f(1)所以f(x)在1,4上的最小值为f(4)8a.得a1,x22,从而f(x)在1,4上的最大值为f(2).16设函数f(x)xaln x(ar)(1)讨论f(x)的单调性;(2)若f(x)有两个极值点x1和x2,记过点a(x1,f(x1),b(x2,f(x2)的直线的斜率为k.问:是否存在a,使得k2a?若存在,求出a的值;若不存在,请说明理由思路分析先求导,通分后发现f(x)的符号与a有关,应对a进行分类,依据方程的判别式来分类解析(1)f(x)的定义域为(0,)f(x)1.令g(x)x2ax1,其判别式a24.当|a|2时,0,f(x)0.故f(x)在(0,)上单调递增当a2时,0,g(x)0的两根都小于0.在(0,)上,f(x)0.故f(x)在(0,)上单调递增当a2时,0,g(x)0的两根为x1,x2.当0xx1时,f(x)0,当x1xx2时,f(x)0;当xx2时,f(x)0.故f(x)分别在(0,x1),(x2,)上单调递增,在(x1,x2)上单调递减(2)由(1)知,a2.因为f(x1)f(x2)(x1x2)a(ln x1ln x2),所以,k1a.又由(1)知,x1x21,于是k2a.若存在a,使得k2a,则1.即ln x1ln x2x1x2.由x1x21得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六一活动大餐活动方案
- 六一活动帐篷活动方案
- 六一活动投球活动方案
- 六一活动游泳池活动方案
- 六一活动趣味性活动方案
- 六一独唱比赛活动方案
- 六一纹眉活动方案
- 六一节慰问活动方案
- 六一营销活动方案
- 六一采访活动方案
- 液晶弹性体在人工肌肉领域的新进展
- 中国海洋生态环境监测市场调查研究及行业投资潜力预测报告
- 2025年上半年甘肃酒泉市肃州区选调事业单位工作人员12人重点基础提升(共500题)附带答案详解
- 《新闻传播学研究方法》大一笔记(13章全)
- GB 45184-2024眼视光产品元件安全技术规范
- 中国磁阻传感器行业市场前瞻与投资战略规划分析报告
- 艺术团体演员聘用合同模板
- 光伏知识及产品培训课件
- 自来水管线更新工程 投标方案(技术方案)
- 2025年中国建筑西南勘察设计研究院有限公司招聘笔试题库含答案解析
- 2025年兖矿集团招聘笔试参考题库含答案解析
评论
0/150
提交评论