




免费预览已结束,剩余6页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【科学备考】(新课标)2015高考数学二轮复习 第九章 平面解析几何 直线方程及两条直线的位置关系 理(含2014试题)理数1. (2014广东,7,5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1l2,l2l3,l3l4,则下列结论一定正确的是()a.l1l4b.l1l4c.l1与l4既不垂直也不平行d.l1与l4的位置关系不确定答案 1.d解析 1.由l1l2,l2l3可知l1与l3的位置不确定,若l1l3,则结合l3l4,得l1l4,所以排除选项b、c,若l1l3,则结合l3l4,知l1与l4可能不垂直,所以排除选项a.故选d.2.(2014重庆一中高三下学期第一次月考,2)已知条件:是两条直线的夹角,条件:是第一象限的角。则“条件” 是“条件” 的( )(a)充分而不必要条件 (b)必要而不充分条件(c)充要条件 (d)既不充分也不必要条件答案 2.d解析 2. 当是两条直线的夹角时, 可得, 不一定是第一象限角, 故“条件” 是“条件” 的不充分条件; 显然“条件” 是“条件” 的不必要条件, 故选d.3. (2014重庆杨家坪中学高三下学期第一次月考,7) 原点在直线上的射影为点, 则直线的方程是( )a. b. c. x2y4=0d. 答案 3. d解析 3. 依题意,直线的斜率为,所以直线的方程为,即4. (2014重庆五区高三第一次学生调研抽测,9) 在点测量到远处有一物体在做匀速直线运动,开始时该物体位于点,一分钟后,其位置在点,且,再过两分钟后,该物体位于点,且,则的值为 ( )a. b. c. d. 答案 4. b解析 4. 如图,由题意知,直线的方程为:,. 设直线直线的方程为:解方程组可得:. 由得. 选b.5.(2014周宁、政和一中第四次联考,4) 已知直线, 互相平行,则的值是( )abc 或d 或答案 5. a解析 5. 要直线,则,解得或,当时,与重合,舍去,故.6.(2013大纲,8,5分)椭圆c: +=1的左、右顶点分别为a1、a2, 点p在c上且直线pa2斜率的取值范围是-2, -1, 那么直线pa1斜率的取值范围是()a. b. c. d. 答案 6.b解析 6.设p(x0, y0), 则有+=1, 即4-=, 由题知a1(-2,0), a2(2,0), 设直线pa1的斜率为k1, 直线pa2的斜率为k2, 则k1=, k2=,所以k1k2=, 由得k1k2=-, 因为k2-2, -1,所以k1的取值范围为, 故选b.7.(2013四川,6,5分)抛物线y2=4x的焦点到双曲线x2-=1的渐近线的距离是()a. b. c. 1d. 答案 7.b解析 7.由抛物线y2=4x, 有2p=4p=2, 焦点坐标为(1,0),双曲线的渐近线方程为y=x, 不妨取其中一条x-y=0, 由点到直线的距离公式, 有d=. 故选b.8.(2013福建,3,5分)双曲线-y2=1的顶点到其渐近线的距离等于()a. b. c. d. 答案 8.c解析 8.双曲线-y2=1的顶点为(2,0), 渐近线为x2y=0, 故顶点到渐近线的距离d=, 选c.9.(2013江西,9,5分)过点(, 0) 引直线l与曲线y=相交于a, b两点, o为坐标原点, 当aob的面积取最大值时, 直线l的斜率等于()a. b. -c. d. -答案 9.b解析 9.如图, 设直线ab的方程为x=my+(显然m 0, 所以m2 1,由根与系数的关系得y1+y2=-, y1y2=,saob=spob-spoa=|op|y2-y1|=.令t=1+m2(t 2),saob=,当=, 即t=4, m=-时, aob的面积取得最大值, 此时, 直线l的斜率为-, 故选b.10.(2013湖南,8,5分) 在等腰直角三角形abc中, ab=ac=4, 点p是边ab上异于a, b的一点. 光线从点p出发, 经bc, ca反射后又回到点p(如图). 若光线qr经过abc的重心, 则ap等于()a. 2b. 1c. d. 答案 10.d解析 10.以ab为x轴, ac为y轴建立如图所示的坐标系, 由题可知b(4,0), c(0,4), a(0,0), 则直线bc方程为x+y-4=0,设p(t, 0) (0 t 4), 由对称知识可得点p关于直线bc的对称点p1的坐标为(4,4-t), 点p关于y轴的对称点p2的坐标为(-t, 0), 根据反射定理可知p1p2就是光线rq所在直线. 由p1、p2两点坐标可得直线p1p2的方程为y=(x+t), 设abc的重心为g, 易知g. 因为重心g在光线rq上, 所以有=, 即3t2-4t=0.所以t=0或t=, 因为0 t 4, 所以t=, 即ap=, 故选d.11.(2013安徽,8,5分)函数y=f(x) 的图象如图所示, 在区间a, b上可找到n(n2) 个不同的数x1, x2, , xn, 使得=, 则n的取值范围是()a. 3,4b. 2,3, 4c. 3,4, 5d. 2,3答案 11.b解析 11.=, 即y=f(x) 的图象与y=kx的交点的坐标满足上述等式. 又交点至少要有两个, 至多有四个, 故n可取2,3, 4.12. (2014大纲全国,15,5分)直线l1和l2是圆x2+y2=2的两条切线.若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于_.答案 12.解析 12.依题意设过点(1,3)且与圆x2+y2=2相切的直线方程为y-3=k(x-1),即kx-y-k+3=0.由直线与圆相切得=,即k2+6k-7=0.解得k1=-7,k2=1,设切线l1,l2的倾斜角分别为1,2,不妨设tan 1 b 0) 经过点p, 离心率e=, 直线l的方程为x=4.(1) 求椭圆c的方程;(2) ab是经过右焦点f的任一弦(不经过点p), 设直线ab与直线l相交于点m, 记pa, pb, pm的斜率分别为k1, k2, k3. 问: 是否存在常数, 使得k1+k2=k3? 若存在, 求的值; 若不存在, 说明理由.答案 17.(1) 由p在椭圆上得, +=1, 依题设知a=2c, 则b2=3c2, 代入, 解得c2=1, a2=4, b2=3.故椭圆c的方程为+=1.(2) 解法一: 由题意可设ab的斜率为k,则直线ab的方程为y=k(x-1), 代入椭圆方程3x2+4y2=12, 并整理, 得(4k2+3) x2-8k2x+4(k2-3) =0.设a(x1, y1), b(x2, y2), 则有x1+x2=, x1x2=, 在方程中令x=4, 得m的坐标为(4,3k).从而k1=, k2=, k3=k-.注意到a, f, b共线, 则有k=kaf=kbf, 即有=k.所以k1+k2=+=+-=2k-, 代入得k1+k2=2k-=2k-1,又k3=k-, 所以k1+k2=2k3. 故存在常数=2符合题意.解法二: 设b(x0, y0) (x01),则直线fb的方程为y=(x-1),令x=4, 求得m,从而直线pm的斜率为k3=,联立得a,则直线pa的斜率为k1=, 直线pb的斜率为k2=,所以k1+k2=+=2k3,故存在常数=2符合题意.17.18.(2013陕西,20,13分)已知动圆过定点a(4,0), 且在y轴上截得弦mn的长为8.() 求动圆圆心的轨迹c的方程;() 已知点b(-1,0), 设不垂直于x轴的直线l与轨迹c交于不同的两点p, q, 若x轴是pbq的角平分线, 证明直线l过定点.答案 18.() 如图, 设动圆圆心o1(x, y), 由题意, |o1a|=|o1m|, 当o1不在y轴上时, 过o1作o1hmn交mn于h, 则h是mn的中点,|o1m|=, 又|o1a|=,=,化简得y2=8x(x0).又当o1在y轴上时, o1与o重合, 点o1的坐标(0,0) 也满足方程y2=8x,动圆圆心的轨迹c的方程为y2=8x.() 由题意, 设直线l的方程为y=kx+b(k0), p(x1, y1), q(x2, y2),将y=kx+b代入y2=8x中,得k2x2+(2bk-8) x+b2=0.其中=-32kb+64 0.由求根公式得, x1+x2=, x1x2=, 因为x轴是pbq的角平分线, 所以=-,即y1(x2+1) +y2(x1+1) =0,(kx1+b) (x2+1) +(kx2+b) (x1+1) =0,2kx1x2+(b+k) (x1+x2) +2b=0, 将, 代入得2kb2+(k+b) (8-2bk) +2k2b=0,k=-b, 此时 0,直线l的方程为y=k(x-1),即直线l过定点(1,0).18.19.(2013浙江,21,15分)如图, 点p(0, -1) 是椭圆c1: +=1(a b 0) 的一个顶点, c1的长轴是圆c2: x2+y2=4的直径. l1, l2是过点p且互相垂直的两条直线, 其中l1交圆c2于a, b两点, l2交椭圆c1于另一点d.() 求椭圆c1的方程;() 求abd面积取最大值时直线l1的方程.答案 19.() 由题意得所以椭圆c的方程为+y2=1.() 设a(x1, y1), b(x2, y2), d(x0, y0). 由题意知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南开大学滨海学院《农药营销与管理学》2024-2025学年第一学期期末试卷
- 广东以色列理工学院《民航快递实训》2024-2025学年第一学期期末试卷
- 西昌民族幼儿师范高等专科学校《数学课程标准与教材分析》2024-2025学年第一学期期末试卷
- 遂宁能源职业学院《信息管理学》2024-2025学年第一学期期末试卷
- 湖北生物科技职业学院《游泳课保健》2024-2025学年第一学期期末试卷
- 贵州农业职业学院《平面设计》2024-2025学年第一学期期末试卷
- (2025年标准)城市苗木出让协议书
- 海南经贸职业技术学院《生物化学(上)》2024-2025学年第一学期期末试卷
- (2025年标准)承揽运输协议书
- 广东白云学院《机器学习》2024-2025学年第一学期期末试卷
- 酒店客房样板间装修验收记录表
- 2024年高级统计实务考试真题及答案解析
- 铁总物资〔2015〕250号:中国铁路总公司物资采购异议处理办法
- GB/Z 42625-2023真空技术真空计用于分压力测量的四极质谱仪特性
- 人民医院心血管外科临床技术操作规范2023版
- 助理工程师考试试题以及答案
- 送东阳马生序
- 2017年全国大学生数学建模A题
- 2023年专升本计算机题库含答案专升本计算机真题
- GB/T 16674.1-2016六角法兰面螺栓小系列
- 住宅项目景观工程施工策划(图文并茂)
评论
0/150
提交评论