


全文预览已结束
VIP免费下载
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省师范大学五华区实验中学高中数学 第二章 数列 等差数列的概念教学案 新人教a版必修5本节课先在具体例子的基础上引出等差数列的概念,接着用不完全归纳法归纳出等差数列的通项公式,最后根据这个公式去进行有关计算.可见本课内容的安排旨在培养学生的观察分析、归纳猜想、应用能力.结合本节课特点,宜采用指导自主学习方法,即学生主动观察分析概括师生互动,形成概念启发引导,演绎结论拓展开放,巩固提高.在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究.在教学过程中,遵循学生的认知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥他们的主观能动性及其在教学过程中的主体地位.创设问题情境,引起学生学习兴趣,激发他们的求知欲,培养学生由特殊到一般的认知能力.使学生认识到生活离不开数学,同样数学也是离不开生活的.学会在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化.教学重点 理解等差数列的概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题.教学难点 (1)等差数列的性质,等差数列“等差”特点的理解、把握和应用;(2)概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式. 教学目标1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.教学过程导入新课问题 上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本p41页的4个例子)(1)0,5,10,15,20,25,;(2)48,53,58,63,;(3)18,15.5,13,10.5,8,5.5;(4)10 072,10 144,10 216,10 288,10 366,.请你们来写出上述四个数列的第7项.问题 请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征.每相邻两项的差相等,都等于同一个常数.问题 作差是否有顺序,谁与谁相减? 作差的顺序是后项减前项,不能颠倒.问题 以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫等差数列.这就是我们这节课要研究的内容.推进新课等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示).(1)公差d一定是由后项减前项所得,而不能用前项减后项来求;(2)对于数列an,若an-a n-1=d(与n无关的数或字母),n2,nn*,则此数列是等差数列,d叫做公差.问题 定义中的关键字是什么?(学生在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题、认识问题的能力)问题 请同学们思考:数列(1)、(2)、(3)、(4)的通项公式存在吗?如果存在,分别是什么? 问题实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考.合作探究等差数列的通项公式问题 等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列an的首项是a1,公差是d,则据其定义可得什么? a2-a1=d,即a2=a1+d.a3-a2=d,即a3=a2+d=a1+2d;a4-a3=d,即a4=a3+d=a1+3d; 由上述各式可以归纳出等差数列的通项公式是an=a1+(n-1)d.由上述关系还可得:am=a1+(m-1)d,即a1=am-(m-1)d.则an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,即等差数列的第二通项公式an=am+(n-m)d.(这是变通的通项公式)由此我们还可以得到.例题剖析【例1】 (1)求等差数列8,5,2,的第20项;(2)-401是不是等差数列-5,-9,-13的项?如果是,是第几项?实质上通项公式就是an,a1,d,n组成的方程(独立的量有三个).说明:(1)强调当数列an的项数n已知时,下标应是确切的数字;(2)实际上是求一个方程的正整数解的问题.这类问题学生以前见得较少,可向学生着重点出本问题的实质:要判断-401是不是数列的项,关键是求出数列的通项公式an,判断是否存在正整数n,使得an=-401成立.【例2】 已知数列an的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?例题分析: (1)若p=0,则an是公差为0的等差数列,即为常数列q,q,q,.(2)若p0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=px+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.(3)数列an为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式.课堂练习(1)求等差数列3,7,11,的第4项与第10项. (2)求等差数列10,8,6,的第20项. (3)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,请说明理由. (4)-20是不是等差数列0, ,-7,的项?如果是,是第几项?如果不是,请说明理由.课堂小结师(1)本节课你们学了什么?(2)要注意什么?(3)在生活中能否运用?(让学生反思、归纳、总
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年度注册公用设备工程师常考点试卷及答案详解【夺冠系列】
- 安全教试题及答案
- 乐高碰撞测试题及答案
- 能源互联网背景下的智能电网重构研究-洞察阐释
- 基于AI的能源消耗预测与优化研究-洞察阐释
- 出租车公司新能源汽车运营权与股权转让合同
- 2025年四川省非全日制新劳动合同书样本
- 茶园资源整合与茶叶产业链承包合同
- 时尚家居定制安装与售后保修合同
- 2025国内货物买卖合同范本示例
- 学前儿童心理发展与指导智慧树知到答案2024年延安职业技术学院
- 2024年山东省交通运输行业职业技能竞赛(装卸机械电器修理工)试题库(含答案)
- 幼儿园教师资格考试面试2024年下半年试题及解答
- 《工程招投标与合同管理》全套教学课件
- DL∕T 5342-2018 110kV~750kV架空输电线路铁塔组立施工工艺导则
- 2024年全国统一考试高考新课标Ⅰ卷数学试题(真题+答案)
- 抖音直播运营策划部门职责及绩效考核指标
- 2024江苏扬州市高邮市交通产业投资集团有限公司招聘17人笔试备考题库及答案解析
- 椎旁小关节病变影像诊断
- 2024年中国南水北调集团水网智慧科技限公司秋季公开招聘高频考题难、易错点模拟试题(共500题)附带答案详解
- MOOC 临床生物化学检验技术-杭州医学院 中国大学慕课答案
评论
0/150
提交评论