八年级数学上册 第13章 轴对称 13.1 轴对称 13.1.2 线段的垂直平分线的性质课件1 (新版)新人教版.ppt_第1页
八年级数学上册 第13章 轴对称 13.1 轴对称 13.1.2 线段的垂直平分线的性质课件1 (新版)新人教版.ppt_第2页
八年级数学上册 第13章 轴对称 13.1 轴对称 13.1.2 线段的垂直平分线的性质课件1 (新版)新人教版.ppt_第3页
八年级数学上册 第13章 轴对称 13.1 轴对称 13.1.2 线段的垂直平分线的性质课件1 (新版)新人教版.ppt_第4页
八年级数学上册 第13章 轴对称 13.1 轴对称 13.1.2 线段的垂直平分线的性质课件1 (新版)新人教版.ppt_第5页
已阅读5页,还剩36页未读 继续免费阅读

付费下载

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

13 1 2线段的垂直平分线的性质 a b 学习目标 1 理解线段垂直平分线的性质和判定 2 能运用线段垂直平分线的性质和判定解决实际问题 3 会用尺规经过已知直线外一点作这条直线的垂线 了解作图的道理 学习重点 线段垂直平分线的性质 课件说明 知识回顾 线段是轴对称图形吗 它的对称轴是什么 什么叫线段的垂直平分线 你能用不同的方法验证这一结论吗 知识点一 线段垂直平分线的性质 探究 如图 直线l垂直平分线段ab p1 p2 p3 是l上的点 请猜想点p1 p2 p3 到点a与点b的距离之间的数量关系 相等 已知 如图 直线l ab 垂足为c ac cb 点p在l上 求证 pa pb 命题 线段垂直平分线上的点到线段两端点的距离相等 用符号语言表示为 ca cb l ab 直线l是线段ab的垂直平分线 pa pb 已知 如图 直线l ab 垂足为c ac cb 点p在l上 求证 pa pb 线段垂直平分线的性质 线段垂直平分线上的点与这条线段两个端点的距离相等 提示 这个结论是经常用来证明两条线段相等的根据之一 用符号语言表示为 ca cb l ab 直线l是线段ab的垂直平分线 pa pb 小结 线段垂直平分线的性质 2 线段垂直平分线上的点与这条线段两个端点的距离相等 1 垂直线段 平分线段 8 课堂练习 练习1如图 在 abc中 bc 8 ab的中垂线交bc于d ac的中垂线交bc与e 则 ade的周长等于 2 如图 在 abc中 ed垂直平分ab 1 若bd 10 则ad 2 若 a 50 则 abd 3 若ac 14 bcd的周长为24 则bc 10 50 10 已知 如图 pa pb 求证 点p在线段ab的垂直平分线上 证明 如图作pc ab于点c 则 pca pcb 90 在rt pca和rt pcb中 rt pca rt pcb hl ac bc 又pc ab 点p在线段ab的垂直平分线上 反过来 如果pa pb 那么点p是否在线段ab的垂直平分线上呢 点p在线段ab的垂直平分线上 知识点二 线段垂直平分线的判定 用几何语言表示为 线段垂直平分线的判定 pa pb 点p在ab的垂直平分线上 这些点能组成什么几何图形 你能再找一些到线段ab两端点的距离相等的点吗 能找到多少个到线段ab两端点距离相等的点 在线段ab的垂直平分线l上的点与a b的距离都相等 反过来 与a b的距离相等的点都在直线l上 所以直线l可以看成与两点a b的距离相等的所有点的集合 小结 线段垂直平分线的判定方法 1 定义法2 与一条线段两个端点距离相等的点 在这条线段的垂直平分线上 解 ad bc bd dc ad是bc的垂直平分线 ab ac 点c在ae的垂直平分线上 ac ce 课堂练习 练习3如图 ad bc bd dc 点c在ae的垂直平分线上 ab ac ce的长度有什么关系 ab bd与de有什么关系 ab ac ce ab ce bd dc ab bd cd ce 即ab bd de 解 ab ac 点a在bc的垂直平分线 mb mc 点m在bc的垂直平分线上 直线am是线段bc的垂直平分线 练习4如图 ab ac mb mc 直线am是线段bc的垂直平分线吗 练习5 如图pa pb 则直线mn是线段ab的垂直平分线 1 任意取一点k 使点k与点c在直线ab两旁 尺规作图 经过已知直线外一点作这条直线的垂线 2 以点c为圆心 ck为半径作弧 交ab于点d和点e 4 作直线cf 直线cf就是所求作的垂线 f 已知 直线ab和ab外一点c求作 ab的垂线 使它经过点c 做法 3 分别以点d和点e为圆心 大于的长为半径作弧 两弧相交于点f 如果两个图形成轴对称 其对称轴是任何一对对应点所连线段的垂直平分线 因此 只要找到任意一组对应点 作出对应点所连线段的垂直平分线 就得到此图形的对称轴 如果两个图形成轴对称 怎样作出图形的对轴 这种作法的依据是什么 知识点三 作线段的垂直平分线 作法 1 分别以点a b为圆心 以大于ab的长为半径作弧 两弧相交于c d两点 2 作直线cd cd就是所求作的直线 这种作图方法还有哪些作用 确定线段的中点 作已知线段的垂线 线段垂直平分线的判定 如图 已知线段ab 用直尺和圆规作ab的垂直平分线 分别以点a b为圆心 以大于ab的长为半径作弧 两弧相交于c d两点 作直线cd cd即为所求的直线 c d 再一次巩固尺规作图 结论 对于轴对称图形 只要找到任意一组对应点 作出对应点所连线段的垂直平分线 就得到此图形的对称轴 1 下图中的五角星有几条对称轴 作出这些对称轴 a b 作法 1 找出五角星的一对对应点a和b 连接ab 2 作出线段ab的垂直平分线n 则n就是这个五角星的一条对称轴 n 用同样的方法 可以找出五条对称轴 所以五角星有五条对称轴 跟踪训练 课堂练习 练习1作出下列图形的一条对称轴 和同学比较一下 你们作出的对称轴一样吗 课堂练习 练习2如图 角是轴对称图形吗 如果是 它的对称轴是什么 课堂练习 练习3如图 与图形a成轴对称的是哪个图形 画出它的对称轴 性质 在线段垂直平分线上的点到线段两个端点距离都相等 判定 与线段两个端点距离相等的点都在线段的垂直平分线上 线段垂直平分线的集合定义 线段垂直平分线可以看作是与线段两个端点距离相等的所有点的集合 课堂小结 线段垂直平分线的性质与判定定理的区别 二者是互逆定理 线段垂直平分线的性质定理的已知条件是线段垂直平分线 结论是垂直平分线上的点与这条线段两端点的距离相等 线段垂直平分线的判定定理的已知条件是一个点与一线段两端点的距离相等 结论是这个点在线段的垂直平分线上 线段垂直平分线的性质是解决线段相等问题的一种重要方法 线段垂直平分线的判定可用来证明两线的位置关系 垂直平分 知识反馈 1 ab ac 2 a在线段bc的中垂线上 ad为bc的中垂线 ab ac 线段垂直平分线上的点与这条线段两个端点的距离相等 与一条线段两个端点距离相等的点 在这条线段的垂直平分线上 3 如图 nm是线段ab的中垂线 下列说法正确的有 ab mn ad db mn ab md dn ab是mn的垂直平分线 在 abc中 pd pe分别是ab ac的垂直平分线 并相交于点p 求证 点p也在bc的垂直平分线上 知识应用 p d e a b c 点p在bc的垂直平分线上 和一条线段的两个端点距离相等的点 在这条线段的垂直平分线上 证明 连结pb pd是ab的垂直平分线 已知 pa pb 线段的垂直平分线上的点和这条线段的两个端点的距离相等 pa pc 已知 pb pc 等量代换 已知 abc中 边ab bc的垂直平分线交于点p 求证 pa pb pc 结论 三角形三边的垂直平分线交于一点 并且这点到三个顶点的距离相等 高速公路 a b 在某高速公路l的同侧 有两个工厂a b 为了便于两厂的工人看病 市政府计划在公路边上修建一所医院 使得两个工厂的工人都没意见 问医院的院址应选在何处 你的方案是什么 生活中的数学 l 某区政府为了方便居民的生活 计划在三个住宅小区a b c之间修建一个购物中心 试问 该购物中心应建于何处 才能使得它到三个小区的距离相等 a b c 思考 生活中的数学 如图 a b表示两个仓库 要在a b一侧的河岸边建造一个码头 使它到两个仓库的距离相等 码头应建在什么位置 说说理由 码头应建在线段的垂直平分线与a b一侧的河岸边的交点上 理由是线段垂直平分线上的点与这条线段两个端点的距离相等 应用新知 解决问题 如图 a b是路边两个新建小区 要在公路边增设一个公共汽车站 使两个小区到车站的路程一样长 该公共汽车站应建在什么地方 提示 连接ab 作ab的垂直平分线 则与公路的交点就是要建的公共汽车站 有a b c三个村庄 现准备要建一所学校 要求学校到三个村庄的距离相等 请你确定学校的位置 a b c 提示 学校在连接任意两点的两条线段的垂直平分线的交点处 1 正方形abcd边长为a 点e f分别是对角线bd上的两点 过点e f分别作ad ab的平行线 如图所示 则图中阴影部分的面积之和等于 解析 运用轴对称 转化的思想 阴影部分面积等于正方形面积的一半 即 答案 2 如图 若ac 12 bc 7 ab的垂直平分线交ab于e 交ac于d 求 bcd

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论