




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 6对数与对数函数 对数的概念及运算1 对数的概念一般地 如果ax n a 0 且a 1 那么数x叫做以a为底n的对数 记作 其中a叫做对数的底数 n叫做对数的真数 x logan 2 对数的性质与运算法则 1 对数的基本性质 a 0且a 1 n 0 a loga1 0 logaa 1 b logaan 2 对数的运算法则如果a 0且a 1 m 0 n 0 则a loga mn logam logan b loga logam logan c logamn nlogam n r n n a logan a b 0 a b 1 n 0 b lobn logab a b 0且a 1 m n r且m 0 c logab logba 1 a b 0且a b 1 d logab logbc logcd logad a b c均大于0且不等于1 d大于0 3 对数的换底公式及推论 c 3 对数函数的图象与性质 4 对数函数与指数函数的性质比较 快速判断logax符号的结论 给定区间 0 1 和 1 当a与x位于这两个区间中的同一个时 则logax 0 否则logax 0 y x 1 已知2a 3b m 且 2 则实数m的值为 a b c 6d 答案a由2a 3b m得a log2m b log3m logm2 logm3 logm6 2 又m 0 m 故选a c 2 已知1m 1 所以0 lognm 2 a c logn lognm 0 所以c a b 故选d c 3 01时 有1 b a 当0 a 1时 有0 a b 1 必要性不成立 故选a c 4 2015衢州一模 4 5分 函数f x ax a 0且a 1 满足f 1 1 则函数y loga x2 1 的单调减区间为 a 1 b 0 c 1 d 0 答案cf 1 a 1 y loga x2 1 的定义域为 1 1 令g x x2 1 则g x 在 1 上单调递减 在 1 上单调递增 所以y loga x2 1 的单调减区间为 1 故选c c 5 设f x 则f x f a 1b 2c 3d 4答案cf x f 3 c 6 2015浙江丽水模拟 函数f x log3x 在区间 a b 上的值域为 0 1 则b a的最小值为 答案解析函数f x log3x 的图象如图 而f f 3 1 f 1 0 由图可知当a b 1时 b a取得最小值 c 对数式的求值与化简典例1 1 2013浙江 3 5分 已知x y为正实数 则 a 2lgx lgy 2lgx 2lgyb 2lg x y 2lgx 2lgyc 2lgx lgy 2lgx 2lgyd 2lg xy 2lgx 2lgy 2 2015嘉兴二模 3 5分 log43 log83 log32 log92 a b c 5d 15 log32 故选a 答案 1 d 2 a解析 1 2lg xy 2lgx lgy 2lgx 2lgy 故选d 2 原式 对数式求值化简的思想方法 1 先利用幂的运算把底数或真数进行变形 化成分数指数幂的形式 使幂的底数最简 然后正用对数运算法则化简合并 2 先将对数式化为同底数对数的和 差 倍数运算 然后逆用对数的运算法则 转化为同底数对数的积 商 幂再进行运算 1 1 2015浙江 12 4分 若a log43 则2a 2 a 答案解析 a log43 log2 2a 2 a 1 2 2015天津文 12 5分 已知a 0 b 0 ab 8 则当a的值为时 log2a log2 2b 取得最大值 答案4解析由已知条件得b 令f a log2a log2 2b 则f a log2a log2 log2a log216 log2a log2a 4 log2a log2a 2 4log2a log2a 2 2 4 当log2a 2 即a 4时 f a 取得最大值 对数函数的图象及应用典例2 2014福建 4 5分 若函数y logax a 0 且a 1 的图象如图所示 则下列函数图象正确的是 答案b解析由题图可知y logax的图象过点 3 1 loga3 1 即a 3 a项 y 在r上为减函数 错误 b项 y x3符合 c项 y x 3 x3在r上为减函数 错误 d项 y log3 x 在 0 上为减函数 错误 1 对一些可通过平移 对称变换作出其图象的对数型函数 在求解其单调性 单调区间 值域 最值 零点时 常利用数形结合法求解 2 对一些对数型方程 不等式问题的求解 常转化为相应函数图象问题 利用数形结合法求解 2 1 2014山东 6 5分 已知函数y loga x c a c为常数 其中a 0 a 1 的图象如图 则下列结论成立的是 a a 1 c 1b a 1 01d 0 0 即logac 0 所以0 c 1 c 2 2若不等式x2 logax1 d 答案b解析由x2 logax 0得x2 logax 设f1 x x2 f2 x logax x 时 要使不等式x2 logax恒成立 只需f1 x x2在上的图象在f2 x logax在上的图象的下方即可 c 当a 1时 显然不成立 当0 a 1时 如图所示 需f1 f2 所以有 loga 解得a a 1 对数值大小的比较典例3 2015浙江镇海中学阶段检测 8 已知0y zb z y xc y x zd z x y答案c解析x loga loga loga y loga5 loga z loga loga loga 0loga loga 即y x z 故选c c 对数值比较大小的方法 1 比较对数值大小时 常化为同底 或找中间量 2 当a 1时 logaf x logag x f x g x 0 当0logag x 0 f x g x 3 1 2015四川 8 5分 设a b都是不等于1的正数 则 3a 3b 3 是 loga33b 3 等价于 a b 1 loga3b 1或03b 3 是 loga3 logb3 的充分不必要条件 故选b c 对数函数性质的综合应用典例4 2013山东 16 4分 定义 正对数 ln x 现有四个命题 若a 0 b 0 则ln ab bln a 若a 0 b 0 则ln ab ln a ln b 若a 0 b 0 则ln ln a ln b 若a 0 b 0 则ln a b ln a ln b ln2 其中的真命题有 写出所有真命题的编号 解析对于 当01时 有此时ln ab lnab blna 而bln a blna ln ab 综上 ln ab bln a 故 正确 对于 令a 2 b 则ln ab ln 0 而ln a ln b ln2 0 故ln ab ln a ln b不成立 故 错误 答案 对于 当01时 有或或经验证 ln ln a ln b成立 当 1时 ln ln a ln b成立 故 正确 对于 分四种情况进行讨论 当a 1 b 1时 不妨令a b 有2ab 2a a b 此时ln a b ln a ln b ln2成立 同理 当a 1 0 b 1或0 a 1 b 1或0 a 1 0 b 1时 ln a b ln a ln b ln2成立 故 正确 综上所述 均正确 与对数函数有关的复合函数的单调性的求解步骤 1 确定定义域 2 弄清函数是由哪些基本初等函数复合而成的 将复合函数分解成基本初等函数y f u u g x 3 分别确定这两个函数的单调区间 4 若这两个函数同增或同减 则y f g x 为增函数 若一增一减 则y f g x 为减函数 即 同增异减 4 1 2015领航卷 已知函数f x lo x2 ax 3a 在 1 上单调递减 则实数a的取值范围是 a 2 b 2 c d 答案d解析令t g x x2 ax 3a 易知f t lot在其定义域上单调递减 要使f x lo x2 ax 3a 在 1 上单调递减 则t g x x2 ax 3a在 1 上单调 递增 且t g x x2 ax 3a 0在 1 上恒成立 即所以即 a 2 故选d c 4 2 2015绍兴期末 已知函数f x log2 4x 1 kx k r 是偶函数 1 求k的值 2 若f 2t2 1 0 若函数f x 与g x 的图象有且只有一个公共点 求实数a的取值范围 解析 1 f x log2 4 x 1 kx log2 4x 1 2x kx c 因为f x 是偶函数 所以f x f x 所以 2k 2 x 0 所以k 1 2 因为k 1 所以f x log2 设0 x10 所以log2 log2 即f x2 f x1 所以f x 在 0 上是单调递增函数 因为f 2t2 1 f t2 2t 1 2t2 1 1 t2 2t 1 0 所以2t2 10 所以g
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省日照市莒县2024-2025学年八年级(下)期末物理试卷(含答案)
- 河南省新乡市新乡县2024-2025学年四年级下学期6月期末数学试题(含答案)
- 北京市海淀区2024-2025学年高一下学期期末物理试卷(含答案)
- 新零售业态研究
- 绿色消费趋势及对市场影响的分析
- 氢能产业园氢气市场需求与供应链管理
- 供水管网数据统计与分析技术方案
- 胎盘早剥汉中马晖12课件
- 物流公司财务管理方案
- 水电站监控课件
- 2025年秋季新学期全体中层干部会议校长讲话:在挑战中谋突破于坚实处启新篇
- 2025年幼儿园保育员考试试题(附答案)
- 【《惠东农商银行个人信贷业务发展现状及存在的问题和策略分析》15000字】
- 2025中国医师节宣传教育课件
- 光伏项目开发培训课件
- 消防设施操作员(监控方向)中级模拟考试题及答案
- 高中数学选修一(人教A版2019)课后习题答案解析
- 中国农业银行笔试题库(含答案)
- GA 1808-2022军工单位反恐怖防范要求
- GB/T 4745-2012纺织品防水性能的检测和评价沾水法
- 新部编人教版八年级上册道德与法治全册课时练(作业设计)
评论
0/150
提交评论