



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
蚂蚁怎样走最近一、内容及其分析本节课要学的内容蚂蚁怎么走最近,指的是勾股定理的,其核心是运用勾股定理及其逆定理解决简单的实际问题,理解它关键就是要需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识。学生已经学过对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础,本节课的内容运用勾股定理及其逆定理解决简单的实际问题就是在此基础上的发展。由于它还与实数有必然的联系,所以在本学科有重要的地位,并有为运算打基础的作用,是本学科的核心内容。教学的重点是探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题,解决重点的关键是利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题二、目标及其解析1、目标定位:(1)学会观察图形,勇于探索图形间的关系,培养学生的空间观念(2)经历一般规律的探索过程,发展学生的抽象思维能力(3)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想2、目标解析:(1)通过有趣的问题提高学习数学的兴趣(2)在解决实际问题的过程中,体验数学学习的实用性三、问题诊断与分析在本节课的教学中,学生可能遇到的困难是立体图形与平面图形之间的转换,产生这一困难的原因是学生空间想象能力还未完全形成。要解决这一问题障碍就要让学生亲自参与立体转换成平面图形的过程,其中关键是立体图形中的量变成平面图形中的什么量的问题。四、教学支持条件分析在本节课立体转换成平面图形的教学中,准备使用幻灯片。因为使用动画,有利于让学生更容易理解量的变化。五、教学过程设计:问题1:情境引入(1)提出问题:从教学楼到综合楼怎样走最近?(2)如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在b处,恰好一只在a处的蚂蚁捕捉到这一信息,于是它想从a处爬向b处,你们想一想,蚂蚁怎么走最近?设计意图:通过情景1复习公理:两点之间线段最短;情景2的创设引入新课,激发学生探究热情从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基础师生活动:教师先提出问题然后由学生回答,老师总结学生的回答。问题2:合作探究学生分为人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算设计意图:通过学生的合作探究,找到解决“蚂蚁怎么走最近”的方法,将曲面最短距离问题转化为平面最短距离问题并利用勾股定理求解在活动中体验数学建摸,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念学生汇总了四种方案:学生很容易算出:情形(1)中ab的路线长为:aa+d,情形(2)中ab的路线长为:aa+d2所以情形(1)的路线比情形(2)要短学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线aa剪开圆柱得到矩形,前三种情形ab是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短如图:(1)中ab的路线长为:aa+d;(2)中ab的路线长为:aa+abab;(3)中ab的路线长为:ao+obab;(4)中ab的路线长为:ab.得出结论:利用展开图中两点之间,线段最短解决问题在这个环节中,可让学生沿母线剪开圆柱体,具体观察接下来后提问:怎样计算ab?在rtaab中,利用勾股定理可得,若已知圆柱体高为12cm,底面半径为3cm,取3,则.问题3:做一做李叔叔想要检测雕塑底座正面的ad边和bc边是否分别垂直于底边ab,但他随身只带了卷尺,(1)你能替他想办法完成任务吗?(2)李叔叔量得ad长是30厘米,ab长是40厘米,bd长是50厘米,ad边垂直于ab边吗?为什么?(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验ad边是否垂直于ab边吗?bc边与ab边呢?解:(2)ad和ab垂直设计意图:运用勾股定理逆定理来解决实际问题,让学生学会分析问题,利用允许的工具灵活处理问题先鼓励学生自己寻找办法,再让学生说明李叔叔的办法的合理性当刻度尺较短时,学生可能会在上面解决问题的基础上,想出多种办法,如利用分段相加的方法量出ab,ad和bd的长度,或在ab,ad边上各量一段较小长度,再去量以它们为边的三角形的第三边,从而得到结论问题4:小试牛刀1甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6km/h的速度向正东行走,1小时后乙出发,他以5km/h的速度向正北行走上午10:00,甲、乙两人相距多远?解答:如图:已知a是甲、乙的出发点,10:00甲到达b点,乙到达c点.则:ab=26=12(千米)ac=15=5(千米)在rtabc中 bc=13(千米) 即甲乙两人相距13千米2如图,台阶a处的蚂蚁要爬到b处搬运食物,它怎么走最近?并求出最近距离 解:3有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?解:设伸入油桶中的长度为x米, 则最长时:最长是2.5+0.5=3(米)最短时:最短是1.5+0.5=2(米)答:这根铁棒的长应在2-3米之间设计意图:对本节知识进行巩固练习,训练学生根据实际情形画出示意图并计算学生能独立地画出示意图,将现实情形转化为数学模型,并求解问题5:举一反三1如图,在棱长为10厘米的正方体的一个顶点a处有一只蚂蚁,现要向顶点b处爬行,已知蚂蚁爬行的速度是1厘米/秒,且速度保持不变,问蚂蚁能否在20秒内从a爬到b?ba解:bab2在我国古代数学著作九章算术中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?解:设水池的水深ac为x尺,则这根芦苇长为ad=ab=(x+1)尺,在直角三角形abc中,bc=5尺由勾股定理得:bc2+ac2=ab2即 52+ x2= (x+1)225+ x2= x2+2 x+1,2 x=24, x=12, x+1=13答:水池的水深12尺,这根芦苇长13尺。设计意图:第1题旨在对“蚂蚁怎样走最近”进行拓展,从圆柱侧面到棱柱侧面,都是将空间问题平面化;第2题,学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;运用方程的思想并利用勾股定理建立方程师生活动:(1)学生能画出棱柱的侧面展开图,确定出ab位置,并正确计算如有可能,还可把正方体换成长方体进行讨论(2)学生能画出示意图,找等量关系,设适当的未知数建立方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 开吊笼考试题及答案
- 玻璃制品机械成型工主管竞选考核试卷及答案
- 酒店保安考试题及答案
- 矿井制冷降温工转正考核试卷及答案
- 课件无响应问题解决
- 自行车与电动自行车装配工岗位操作技能考核试卷及答案
- 金山焊工考试题及答案
- 保险公估人工艺创新考核试卷及答案
- 医用消毒、低温设备组装调试工专项考核试卷及答案
- 教师调动考试题及答案
- 设施赔偿协议书范本
- 2025-2030中国镁合金行业市场深度调研及发展趋势与投资前景预测研究报告
- DB50∕T 632-2015 火灾高危单位消防安全评估规程
- 2025年上半年湖南湘西州龙山县事业单位招聘工作人员41人易考易错模拟试题(共500题)试卷后附参考答案
- 精神科进修汇报:专业护理实践与挑战
- 加油站员工绩效考核制度或加油站员工激励约束办法
- 食堂验货标准培训
- 电动叉车安全操作培训
- 浆砌石挡墙拆除施工技术方案
- 人教版九年级化学上册教学工作计划(及进度表)
- T-SEEPLA 09-2024 四川省功能区声环境质量监测站(点)布设技术规范
评论
0/150
提交评论