




免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1. 1.1变化率问题课前预习学案预习目标:“变化率问题”,课本中的问题1,2。知道平均变化率的定义。预习内容:问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?气球的体积(单位:)与半径(单位:)之间的函数关系是如果将半径表示为体积的函数,那么在吹气球问题中,当空气容量v从0增加到1l时,气球的平均膨胀率为_ 当空气容量v从1l增加到2l时,气球的平均膨胀率为_ 当空气容量从v1增加到v2时,气球的平均膨胀率为_hto 问题2 高台跳水在高台跳水运动中,,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)= -4.9t2+6.5t+10. 如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?在这段时间里,=_在这段时间里,=_问题3 平均变化率 已知函数,则变化率可用式子_,此式称之为函数从到_.习惯上用表示,即=_,可把看做是相对于的一个“增量”,可用代替,类似有_,于是,平均变化率可以表示为_提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案学习目标 1.理解平均变化率的概念;2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率.学习重点:平均变化率的概念、函数在某点处附近的平均变化率.学习难点:平均变化率的概念.学习过程一:问题提出问题1气球膨胀率问题: 气球的体积v(单位:l)与半径r(单位:dm)之间的函数关系是_.如果将半径r表示为体积v的函数,那么_.1 当v从0增加到1时,气球半径增加了_.气球的平均膨胀率为_.2 当v从1增加到2时,气球半径增加了_.hto 气球的平均膨胀率为_.可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了思考:当空气容量从v1增加到v2时,气球的平均膨胀率是多少? _. 问题2 高台跳水问题:在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在怎样的函数关系?在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系_.)如何计算运动员的平均速度?并分别计算t.5,1t2,1.8t2,2t2.2,时间段里的平均速度.思考计算:和的平均速度在这段时间里,_.;在这段时间里,_.探究:计算运动员在这段时间里的平均速度,并思考以下问题:运动员在这段时间内使静止的吗?你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知,所以_.虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态(1)计算和思考,展开讨论;(2)说出自己的发现,并初步修正到最终的结论上.(3)得到结论是:平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的运动状态. 需要寻找一个量,能更精细地刻画运动员的运动状态;二平均变化率概念:1上述问题中的变化率可用式子 表示, 称为函数f(x)从x1到x2的平均变化率2若设, (这里看作是对于x1的一个“增量”可用x1+代替x2,同样)3 则平均变化率为_.思考:观察函数f(x)的图象平均变化率表示什么?(1) 一起讨论、分析,得出结果;(2) 计算平均变化率的步骤:求自变量的增量x=x2-x1;求函数的增量f=f(x2)-f(x1);求平均变化率.注意:x是一个整体符号,而不是与x相乘;x2= x1+x;f=y=y2-y1;三典例分析例1已知函数f(x)=的图象上的一点及临近一点,则 解:例2求在附近的平均变化率。解:四有效训练1质点运动规律为,则在时间中相应的平均速度为 2.物体按照s(t)=3t2+t+4的规律作直线运动,求在4s附近的平均变化率.3.过曲线y=f(x)=x3上两点p(1,1)和q (1+x,1+y)作曲线的割线,求出当x=0.1时割线的斜率.反思总结:1、平均变化率的概念 2、如何求函数在某点附近的平均变化率当堂检测1、函数在区间上的平均变化率是( )a、4 b、2 c、 d、2、经过函数图象上两点a、b的直线的斜率()为_;函数在区间1,1.5上的平均变化率为_3、如果质点m按规律运动,则在时间2,2.1中相应的平均速度等于_课后练习与提高1、 已知函数,分别计算在下列区间上的平均变化率 (1)1,1.01 (2)0.9,1 2、 已知一次函数在区间-2,6上的平均变化率为2,且函数图象过点(0,2),试求此一次函数的表达式。3、已知函数的图象上一点(1,1)及邻近一点(1+,),求4、将半径为r的球加热,若球的半径增加,则球的体积增量1.1.1 变化率问题教学目标:1.理解平均变化率的概念;2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率.教学重点:平均变化率的概念、函数在某点处附近的平均变化率.教学难点:平均变化率的概念.教学过程:一、创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;二、求曲线的切线;三、求已知函数的最大值与最小值;四、求长度、面积、体积和重心等.导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具.导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.二、新课讲授(一)问题提出问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?气球的体积(单位:)与半径(单位:)之间的函数关系是如果将半径表示为体积的函数,那么分析: (1)当从增加到时,气球半径增加了气球的平均膨胀率为(2)当从增加到时,气球半径增加了气球的平均膨胀率为可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考: 当空气容量从v1增加到v2时,气球的平均膨胀率是多少? hto 问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度(单位:)与起跳后的时间(单位:)存在函数关系.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?思考计算: 和的平均速度在这段时间里,在这段时间里,探究: 计算运动员在这段时间里的平均速度,并思考以下问题:(1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程: 如图是函数的图像,结合图形可知,所以虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.(二)平均变化率概念1.上述问题中的变化率可用式子表示,称为函数从到的平均变化率.2.若设, (这里看作是对于的一个“增量”可用代替,同样)则平均变化率为思考: 观察函数的图象平均变化率表示什么?三、典例分析例1 已知函数的图象上的一点及临近一点则 .解: 例2 求在附近的平均变化率.解: 所以 所以在附近的平均变化率为四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年安徽省安庆市白泽湖中学生物高三上期末调研模拟试题
- 子节目艺人参演协议
- 风电叶片回收处理技术2025年创新驱动产业转型报告
- 2025年计算机科学原理与技术模拟试题及答案
- 2025年不良资产处置市场格局分析与创新模式应用研究报告
- 3 法国的民主共和制与半总统制说课稿-2025-2026学年高中思想政治人教版选修3国家和国际组织常识-人教版
- 2023七年级数学下册 第四章 三角形4 用尺规作三角形说课稿 (新版)北师大版
- 劳务费用结算方式合同
- 二次供水卫生监督试卷及答案
- 护理服务期间健康监测协议
- GB/T 6728-2017结构用冷弯空心型钢
- GB/T 35147-2017石油天然气工业机械动力传输挠性联轴器一般用途
- GB/T 32911-2016软件测试成本度量规范
- GB/T 10125-2021人造气氛腐蚀试验盐雾试验
- T-JSYLA 00007-2022 江苏省智慧公园建设指南
- 员工宿舍的整改方案
- 《压力容器安全技术监察规程》
- 数控加工中心培训课件
- 《思想政治教育专业导论》课程教学大纲
- 自动控制原理全套ppt课件(完整版)
- 智慧燃气安全监管平台建设方案
评论
0/150
提交评论