高中数学 空间向量运算的坐标表示参考学案 北师大版选修21.doc_第1页
高中数学 空间向量运算的坐标表示参考学案 北师大版选修21.doc_第2页
高中数学 空间向量运算的坐标表示参考学案 北师大版选修21.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.3 空间向量运算的坐标表示学习目标 1. 掌握空间向量的长度公式、夹角公式、两点间距离公式;2. 会用这些公式解决有关问题.学习过程 一、课前准备(预习教材,找出疑惑之处)复习1:设在平面直角坐标系中,a,b,则线段ab .复习2:已知,求:(1)ab. (2)3ab; (3)6a. ; (4)ab.二、新课导学学习探究探究任务一:空间向量坐标表示夹角和距离公式问题:在空间直角坐标系中,如何用坐标求线段的长度和两个向量之间的夹角?新知:1. 向量的模:设a,则a 2. 两个向量的夹角公式:设a,b,由向量数量积定义: ab|a|b|cosa,b,又由向量数量积坐标运算公式:ab ,由此可以得出:cosa,b 试试: 当cosa、b1时,a与b所成角是 ; 当cosa、b1时,a与b所成角是 ; 当cosa、b0时,a与b所成角是 ,即a与b的位置关系是 ,用符合表示为 .反思:设a,b,则(1) a/b. a与b所成角是 a与b的坐标关系为 ;(2) aba与b的坐标关系为 ;3. 两点间的距离公式:在空间直角坐标系中,已知点,则线段ab的长度为:. 典型例题例1. 如图,在正方体中,点分别是的一个四等分点,求与所成的角的余弦值变式:如上图,在正方体中,求与所成角的余弦值 例2. 如图,正方体中,点e,f分别是的中点,求证:. 变式:如图,正方体中,点m是ab的中点,求与cm所成角的余弦值. 小结:求两个向量的夹角或角的余弦值的关键是在合适的直角坐标系中找出两个向量的坐标,然后再用公式计算. 动手试试练1. 已知a(3,3,1)、b(1,0,5),求:(1)线段ab的中点坐标和长度;(2)到a、b两点距离相等的点的坐标x、y、z满足的条件练2. 如图,正方体的棱长为2,试建立适当的空间直角坐标系,写出正方体各顶点的坐标,并和你的同学交流.三、总结提升学习小结1. 空间向量的长度公式、夹角公式、两点间距离公式、中点坐标公式;2. 解决立体几何中有关向量问题的关键是如何建立合适的空间直角坐标系,写出向量的坐标,然后再代入公式进行计算. 知识拓展在平面内取正交基底建立坐标系后,坐标平面内的任意一个向量,都可以用二元有序实数对表示,平面向量又称二维向量.空间向量可用三元有序实数组表示,空间向量又称三维向量.二维向量和三维向量统称为几何向量. 当堂检测:1. 若a,b,则是的( )a.充分不必要条件 b.必要不充分条件c.充要条件 d.既不充分又不不要条件2. 已知,且,则x .3. 已知,与的夹角为120,则的值为( )a. b. c. d. 4. 若,且的夹角为钝角,则的取值范围是( )a. b. c. d. 5. 已知 , 且,则( )a. b. c. d. 课后作业: 1. 如图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论