已阅读5页,还剩53页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3 2导数的应用 第3课时导数与函数的综合问题 课时作业 题型分类深度剖析 内容索引 题型分类深度剖析 题型一导数与不等式有关的问题 命题点1解不等式 例1设f x 是定义在r上的奇函数 f 2 0 当x 0时 有0的解集是a 2 0 2 b 2 0 0 2 c 2 2 d 2 0 2 答案 解析 又 2 0 当且仅当00 此时x2f x 0 又f x 为奇函数 h x x2f x 也为奇函数 故x2f x 0的解集为 2 0 2 命题点2证明不等式例2 2016 全国丙卷 设函数f x lnx x 1 1 讨论f x 的单调性 解答 令f x 0 解得x 1 当00 f x 是增加的 当x 1时 f x 0 f x 是减少的 2 证明 当x 1 时 1 x 证明 由 1 知 f x 在x 1处取得最大值 最大值为f 1 0 所以当x 1时 lnx x 1 例3已知函数f x 命题点3不等式恒成立或有解问题 解答 1 若函数f x 在区间 a a 上存在极值 求正实数a的取值范围 令f x 0 得x 1 当x 0 1 时 f x 0 f x 是增加的 当x 1 时 f x 0 f x 是减少的 几何画板展示 2 如果当x 1时 不等式f x 恒成立 求实数k的取值范围 解答 所以h x h 1 1 所以g x 0 所以g x 为增函数 所以g x g 1 2 故k 2 所以实数k的取值范围是 2 引申探究本例 2 中若改为 存在x0 1 e 使不等式f x 成立 求实数k的取值范围 解答 思维升华 1 利用导数解不等式的思路已知一个含f x 的不等式 可得到和f x 有关的函数的单调性 然后可利用函数单调性解不等式 2 利用导数证明不等式的方法证明f x g x x a b 可以构造函数f x f x g x 如果f x 0 则f x 在 a b 上是减函数 同时若f a 0 由减函数的定义可知 x a b 时 有f x 0 即证明了f x g x 3 利用导数解决不等式的恒成立问题的策略 首先要构造函数 利用导数研究函数的单调性 求出最值 进而得出相应的含参不等式 从而求出参数的取值范围 也可分离变量 构造函数 直接把问题转化为函数的最值问题 跟踪训练1已知函数f x x2lnx a x2 1 a r 1 当a 1时 求曲线f x 在点 1 f 1 处的切线方程 解答 当a 1时 f x x2lnx x2 1 f x 2xlnx 3x 则曲线f x 在点 1 f 1 处的切线的斜率为f 1 3 又f 1 0 所以切线方程为3x y 3 0 2 若当x 1时 f x 0恒成立 求a的取值范围 证明 f x 2xlnx 1 2a x x 2lnx 1 2a 其中x 1 所以函数f x 在 1 上是增加的 故f x f 1 0 当a 时 令f x 0 得x 若x 则f x 0 所以函数f x 在上是减少的 所以当x 时 f x f 1 0 不符合题意 综上 a的取值范围是 题型二利用导数研究函数零点问题 例4 2016 福州模拟 已知函数f x 2 a x 2 1 lnx a 1 当a 1时 求f x 的单调区间 解答 当a 1时 f x x 1 2lnx 由f x 0 得x 2 由f x 0 得0 x 2 故f x 的递减区间为 0 2 递增区间为 2 2 若函数f x 在区间 0 上无零点 求a的最小值 解答 几何画板展示 f x 2 a x 1 2lnx 令m x 2 a x 1 x 0 h x 2lnx x 0 则f x m x h x a 2 4ln2 2 4ln2 a 2 由 得a 2 4ln2 amin 2 4ln2 思维升华 利用导数研究方程的根 函数的零点 的策略研究方程的根或曲线的交点个数问题 可构造函数 转化为研究函数的零点个数问题 可利用导数研究函数的极值 最值 单调性 变化趋势等 从而画出函数的大致图像 然后根据图像判断函数的零点个数 跟踪训练2 2016 郑州模拟 定义在r上的奇函数y f x 满足f 3 0 且不等式f x xf x 在 0 上恒成立 则函数g x xf x lg x 1 的零点个数为a 4b 3c 2d 1 答案 解析 定义在r上的奇函数f x 满足 f 0 0 f 3 f 3 f x f x 当x 0时 f x xf x 即f x xf x 0 xf x 0 即h x xf x 在x 0时是增函数 又h x xf x xf x h x xf x 是偶函数 当x 0时 h x 是减函数 结合函数的定义域为r 且f 0 f 3 f 3 0 可得函数y1 xf x 与y2 lg x 1 的大致图像如图 由图像可知 函数g x xf x lg x 1 的零点的个数为3 题型三利用导数研究生活中的优化问题 例5某商场销售某种商品的经验表明 该商品每日的销售量y 单位 千克 与销售价格x 单位 元 千克 满足关系式y 10 x 6 2 其中3 x 6 a为常数 已知销售价格为5元 千克时 每日可售出该商品11千克 1 求a的值 解答 因为当x 5时 y 11 所以 10 11 a 2 2 若该商品的成本为3元 千克 试确定销售价格x的值 使商场每日销售该商品所获得的利润最大 解答 由 1 可知 该商品每日的销售量为y 10 x 6 2 所以商场每日销售该商品所获得的利润为 f x x 3 10 x 6 2 2 10 x 3 x 6 2 3 x 6 从而 f x 10 x 6 2 2 x 3 x 6 30 x 4 x 6 于是 当x变化时 f x f x 的变化情况如下表 由上表可得 当x 4时 函数f x 取得极大值 也是最大值 所以 当x 4时 函数f x 取得最大值且最大值等于42 答当销售价格为4元 千克时 商场每日销售该商品所获得的利润最大 思维升华 利用导数解决生活中的优化问题的四个步骤 1 分析实际问题中各个量之间的关系 列出实际问题的数学模型 写出实际问题中变量之间的函数关系式y f x 2 求函数的导数f x 解方程f x 0 3 比较函数在区间端点和使f x 0的点的函数值的大小 最大 小 者为最大 小 值 若函数在开区间内只有一个极值点 那么该极值点就是最值点 4 回归实际问题作答 令y x2 39x 40 0 得x 1或x 40 由于当040时 y 0 所以当x 40时 y有最小值 答案 解析 40 典例 12分 设f x xlnx g x x3 x2 3 1 如果存在x1 x2 0 2 使得g x1 g x2 m成立 求满足上述条件的最大整数m 2 如果对于任意的s t 2 都有f s g t 成立 求实数a的取值范围 一审条件挖隐含 审题路线图系列 规范解答 审题路线图 1 存在x1 x2 0 2 使得g x1 g x2 m 正确理解 存在 的含义 g x1 g x2 max m 挖掘 g x1 g x2 max的隐含实质g x max g x min m 求得m的最大整数值 2 对任意s t 2 都有f s g t 理解 任意 的含义 f x min g x max 求得g x max 1 xlnx 1恒成立 分离参数aa x x2lnx恒成立 求h x x x2lnx的最大值 a h x max h 1 1 a 1 返回 解 1 存在x1 x2 0 2 使得g x1 g x2 m成立 等价于 g x1 g x2 max m 2分 由g x x3 x2 3 得g x 3x2 2x 3x x 令g x 0 得x 则满足条件的最大整数m 4 5分 设h x x x2lnx h x 1 2xlnx x 可知h x 在区间 2 上是减函数 又h 1 0 所以当10 10分 即函数h x x x2lnx在区间 1 上是增加的 在区间 1 2 上是减少的 所以h x max h 1 1 所以a 1 即实数a的取值范围是 1 12分 返回 课时作业 1 已知f x g x g x 0 分别是定义在r上的奇函数和偶函数 当x 0时 f x g x f x g x 且f 3 0 则 0的解集为 1 2 3 4 5 6 7 8 9 10 11 12 13 答案 解析 a 3 3 b 3 0 0 3 c 3 0 3 d 3 0 3 当x 0时 f x g x f x g x 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 2 2016 兰州模拟 已知定义在r上的可导函数f x 的导函数为f x 满足f x f x 且f x 2 为偶函数 f 4 1 则不等式f x ex的解集为a 2 b 0 c 1 d 4 答案 解析 f x 2 为偶函数 f x 2 的图像关于x 0对称 f x 的图像关于x 2对称 f 4 f 0 1 又 f x f x g x 0 x r 函数g x 在定义域上是减少的 f x 0 故选b 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 3 方程x3 6x2 9x 10 0的实根个数是a 3b 2c 1d 0 答案 解析 设f x x3 6x2 9x 10 则f x 3x2 12x 9 3 x 1 x 3 由此可知函数的极大值为f 1 6 0 极小值为f 3 10 0 所以方程x3 6x2 9x 10 0的实根个数为1 故选c 1 2 3 4 5 6 7 8 9 10 11 12 13 4 当x 2 1 时 不等式ax3 x2 4x 3 0恒成立 则实数a的取值范围是a 5 3 b 6 c 6 2 d 4 3 答案 解析 令g t 3t3 4t2 t 在t 1 上 g t 0 g t 是减少的 所以g t max g 1 6 因此a 6 同理 当x 2 0 时 得a 2 由以上两种情况得 6 a 2 显然当x 0时也成立 故实数a的取值范围为 6 2 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 5 若商品的年利润y 万元 与年产量x 百万件 的函数关系式 y x3 27x 123 x 0 则获得最大利润时的年产量为a 1百万件b 2百万件c 3百万件d 4百万件 答案 解析 y 3x2 27 3 x 3 x 3 当00 当x 3时 y 0 故当x 3时 该商品的年利润最大 6 2016 合肥质检 直线x t分别与函数f x ex 1的图像及g x 2x 1的图像相交于点a和点b 则 ab 的最小值为a 2b 3c 4 2ln2d 3 2ln2 答案 解析 由题意得 ab ex 1 2x 1 ex 2x 2 令h x ex 2x 2 则h x ex 2 所以h x 在 ln2 上是减少的 在 ln2 上是增加的 所以h x min h ln2 4 2ln2 0 即 ab 的最小值是4 2ln2 故选c 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 a a b cb b c ac a c bd c a b 答案 解析 构造函数h x xf x 则h x f x x f x y f x 是定义在r上的奇函数 h x 是定义在r上的偶函数 当x 0时 h x f x x f x 0 此时函数h x 单调递增 1 2 3 4 5 6 7 8 9 10 11 12 13 8 若函数f x 2x sinx对任意的m 2 2 f mx 3 f x 0恒成立 则x的取值范围是 答案 解析 3 1 因为f x 是r上的奇函数 f x 2 cosx 0 则f x 在定义域内为增函数 所以f mx 3 f x 0可变形为f mx 3 f x 所以mx 3 x 将其看作关于m的一次函数 则g m x m 3 x m 2 2 可得当m 2 2 时 g m 0恒成立 g 2 0 g 2 0 解得 3 x 1 1 2 3 4 5 6 7 8 9 10 11 12 13 9 2016 郴州模拟 定义在r上的函数f x 满足 f x f x 1 f 0 4 则不等式exf x ex 3 其中e为自然对数的底数 的解集为 答案 解析 0 设g x exf x ex x r 则g x exf x exf x ex ex f x f x 1 f x f x 1 f x f x 1 0 g x 0 y g x 在定义域上是增加的 exf x ex 3 g x 3 又 g 0 e0f 0 e0 4 1 3 g x g 0 x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 10 已知函数f x ax3 3x2 1 若f x 存在唯一的零点x0且x0 0 则a的取值范围是 答案 解析 2 当a 0时 f x 3x2 1有两个零点 不合题意 故a 0 f x 3ax2 6x 3x ax 2 令f x 0 得x1 0 x2 若a 0 由三次函数图像知f x 有负数零点 不合题意 故a 0 由三次函数图像及f 0 1 0知 f 0 又a 0 所以a 2 1 2 3 4 5 6 7 8 9 10 11 12 13 11 2016 济南模拟 已知f x 1 x ex 1 1 求函数f x 的最大值 解答 f x xex 当x 0 时 f x 0 f x 是增加的 当x 0 时 f x 0 f x 是减少的 所以f x 的最大值为f 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 2 设g x x 1且x 0 证明 g x 1 证明 由 1 知 当x 0时 f x x 设h x f x x 则h x xex 1 当x 1 0 时 0h 0 0 即g x 1且x 0时总有g x 1 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 12 2016 东北师大附中 吉林一中等五校联考 已知函数f x ex ax a a r且a 0 1 若f 0 2 求实数a的值 并求此时f x 在 2 1 上的最小值 解答 由f 0 1 a 2 得a 1 易知f x 在 2 0 上是减少的 在 0 1 上是增加的 所以当x 0时 f x 在 2 1 上取得最小值2 1 2 3 4 5 6 7 8 9 10 11 12 13 2 若函数f x 不存在零点 求实数a的取值范围 解答 f x ex a 由于ex 0 当a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医学云计算工程师卫生统计案例分析教学课件
- 医学序列比对统计案例分析教学课件
- 胰腺炎护理:心理护理与干预措施
- 人防法考试题及答案
- 医院感染控制与手卫生规范操作
- 促进颌骨骨折愈合的康复护理方法
- 内痔套扎术与其他内痔治疗方式的护理对比
- 急性脑梗死护理:以患者为中心的综合管理策略
- 术后疼痛管理的非药物干预方法
- 人物介绍炫酷开场
- 玉米青贮技术培训资料
- 植物学-藻类植物3
- 医院危化品安全培训PPT
- 代办签证告知书
- 12123交管学法减分考试题库及答案
- GB/T 16951-1997金刚石绳索取心钻探钻具设备
- GB/T 1628.5-2000工业冰乙酸中甲酸含量的测定气相色谱法
- GA/T 1466.1-2018智能手机型移动警务终端第1部分:技术要求
- 外派人员培训课件
- 《最优化方法》研究生配套教学课件
- 土地开发整理项目预算定额标准湖南省补充定额标准
评论
0/150
提交评论