




免费预览已结束,剩余3页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【成才之路】2015-2016学年高中数学 1.3.2函数的极值与导数练习 新人教a版选修2-2一、选择题1(2015吉林实验中学高二期中)已知函数yf(x)在定义域内可导,则函数yf(x)在某点处的导数值为0是函数yf(x)在这点处取得极值的()a充分不必要条件b必要不充分条件c充要条件d非充分非必要条件答案b解析根据导数的性质可知,若函数yf(x)在这点处取得极值,则f(x)0,即必要性成立;反之不一定成立,如函数f(x)x3在r上是增函数,f(x)3x2,则f(0)0,但在x0处函数不是极值,即充分性不成立故函数yf(x)在某点处的导数值为0是函数yf(x)在这点处取得极值的必要不充分条件,故选b.2函数yx4x3的极值点的个数为()a0b1c2d3答案b解析yx3x2x2(x1),由y0得x10,x21.当x变化时,y、y的变化情况如下表x(,0)0(0,1)1(1,)y00y无极值极小值故选b.3已知实数a、b、c、d成等比数列,且曲线y3xx3的极大值点坐标为(b,c),则ad等于()a2b1c1 d2答案a解析a、b、c、d成等比数列,adbc,又(b,c)为函数y3xx3的极大值点,c3bb3,且033b2,或ad2.4已知f(x)x3ax2(a6)x1有极大值和极小值,则a的取值范围是()a1a2b3a6ca6da2答案c解析f (x)3x22axa6,f(x)有极大值与极小值,f (x)0有两不等实根,4a212(a6)0,a6.5已知函数f(x)x3px2qx的图象与x轴切于(1,0)点,则f(x)的极大值、极小值分别为()a.,0b0,c,0d0,答案a解析f (x)3x22pxq,由f (1)0,f(1)0得,解得f(x)x32x2x.由f (x)3x24x10得x或x1,易得当x时f(x)取极大值.当x1时f(x)取极小值0.6函数f(x)(ab1),则()af(a)f(b)bf(a)f(b)df(a),f(b)的大小关系不能确定答案c解析f (x)().当x1时,f (x)0,f(x)为减函数,abf(b)二、填空题7(20142015福建安溪一中、养正中学联考)曲线yx(3lnx1)在点(1,1)处的切线方程为_答案4xy30解析y|x1(3lnx4)|x14,切线方程为y14(x1),即4xy30.8(20142015河北冀州中学期中)若函数f(x)xasinx在r上递增,则实数a的取值范围为_答案1,1解析f (x)1acosx,由条件知f (x)0在r上恒成立,1acosx0,a0时显然成立;a0时,cosx恒成立,1,a1,0a1;a0时,cosx恒成立,1,a1,即1a0,综上知1a1.9设x1与x2是函数f(x)alnxbx2x的两个极值点,则常数a_.答案解析f (x)2bx1,由题意得a.三、解答题10已知f(x)ax3bx2cx(a0)在x1时取得极值,且f(1)1.(1)试求常数a、b、c的值;(2)试判断x1时函数取得极小值还是极大值,并说明理由解析(1)由f (1)f (1)0,得3a2bc0,3a2bc0.又f(1)1,abc1.a,b0,c.(2)f(x)x3x,f (x)x2(x1)(x1)当x1时,f (x)0;当1x1时,f (x)0,函数f(x)在(,1)和(1,)上是增函数,在(1,1)上为减函数当x1时,函数取得极大值f(1)1;当x1时,函数取得极小值f(1)1.点评若函数f(x)在x0处取得极值,则一定有f (x0)0,因此我们可根据极值得到两个方程,再由f(1)1得到一个方程,解上述方程组成的方程组可求出参数一、选择题11(20142015山东省德州市期中)已知函数f(x)ex(sinxcosx),x(0,2013),则函数f(x)的极大值之和为()a.bc.d答案b解析f (x)2exsinx,令f (x)0得sinx0,xk,kz,当2kx0,f(x)单调递增,当(2k1)x2k时,f (x)0,f(x)单调递减,当x(2k1)时,f(x)取到极大值,x(0,2013),0(2k1)2013,0k0(其中f(x)是函数f(x)的导函数),则下列不等式中成立的有_fff(0)f f0,g(x)在上单调递增,故得gg,g(0)f,f(0)f,ff,错误,正确;正确;又gg,即,f0;当x(2,ln2)时,f (x)0.故f(x)在(,2),(ln2,)上单调递增,在(2,ln2)上单调递减当x2时,函数f(x)取得极大值,极大值为f(2)4(1e2)16(2015北京文,19)设函数f(x)kln x,k0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,上仅有一个零点分析本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数的零点等基础知识,考查学生分析问题解决问题的能力、转化能力、计算能力第一问,先对f(x)求导,令f(x)0解出x,将函数的定义域分段,列表,分析函数的单调性,求极值;第二问,利用第一问的表求函数的最小值,如果函数有零点,只需最小值0,从而解出k的取值范围,后面再分情况分析函数有几个零点解析(1)由f(x)kln x,(k0)得,f(x)x.由f(x)0解得x(负值舍去)f(x)与f(x)在区间(0,)上的情况如下:x(0,)(,)f(x)0f(x)所以,f(x)的单调递减区间是(0,),单调递增区间是(,);f(x)在x处取得极小值f().(2)由(1)知,f(x)在区间(0,)上的最小值为f().因为f(x)存在零点,所以0,从而ke.当ke时,f(x)在区间(1,)上单调递减,且f()0,所以x是f(x)在区间(1,上的唯一零点当ke时,f(x)在区间(0,)上单调递减,且f(1)0,f()0,所以f(x)在区间(1,上仅有一个零点综上可知,若f(x)存在零点,则f(x)在区间( 1,上仅有一个零点. 17(20142015山东省菏泽市期中)已知函数f(x)x2alnx.(1)若a1,求函数f(x)的极值,并指出是极大值还是极小值;(2)若a1,求证:在区间1,)上,函数f(x)的图象在函数g(x)x3的图象的下方解析(1)由于函数f(x)的定义域为(0,),当a1时,f (x)x,令f (x)0得x1或x1(舍去),当x(0,1)时,f (x)0,因此函数f(x)在(1,)上单调递增,则x1是f(x)的极小值点,所以f(x)在x1处取得极小值为f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海市第一人民医院招聘考试真题2024
- 钢带考试题及答案
- 现代金融基础习题(附答案)
- 道路危险货物运输从业人员岗前三级培训考核试题(附答案)
- 非高危行业安全员培训考试试题及答案
- 2025版公共设施维护与维修合同模板
- 2025拆旧房屋拆除工程拆除作业拆除物运输合同范本
- 2025年度房产开发公司员工劳动合同范本
- 2025年度平面广告设计制作及版权授权合同
- 2025版滩涂地海上风电土地承包使用合同
- 2024惠州卫生职业技术学院辅导员招聘笔试真题
- 电工复审培训课件
- 2025新《安全生产法》知识考试题库及答案
- 2025年苏教版(2024)小学科学一年级上册(全册)教学设计(附目录 P137)
- 高频变压器项目商业模式分析报告
- 杜邦安全培训课件
- 16949工程变更课件
- 国宝文物运送活动方案
- 2024年德州市第二人民医院招聘备案制工作人员笔试真题
- 护理沟通与服务课件
- 高低压配电施工设计方案
评论
0/150
提交评论