高中数学 两角和与差的正弦(2)随堂练习 新人教版必修4.doc_第1页
高中数学 两角和与差的正弦(2)随堂练习 新人教版必修4.doc_第2页
高中数学 两角和与差的正弦(2)随堂练习 新人教版必修4.doc_第3页
高中数学 两角和与差的正弦(2)随堂练习 新人教版必修4.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

两角和与差的正弦(2)12014昆明模拟若cos,是第三象限的角,则sin() 2 3都是锐角,且, 4已知,且,则的是 5 6将函数的图象向左平移个单位(),是所得函数的图象的一个对称中心,则的最小值为 7已知函数,则函数的振幅为 8已知(0,),cos=,则sin()=_9(本小题满分13分)已知函数.(1)求的值;(2)求的单调递增区间.参考答案1【解析】由题意知,cos,是第三象限的角,所以sin,由两角和的正弦公式可得,sin()sincoscossin()()21【解析】试题分析:根据两角和的公式,考点:两角和的正弦公式3【解析】试题分析:由都是锐角,利用同角三角函数间的基本关系分别求出和的值,然后把所求式子的角变为,利用两角和与差的正弦函数公式化简,把各自的值代入即可求出值试题解析:都是锐角,且,考点:1、同角三角函数间的基本关系;2、两角和与差的余弦函数4【解析】试题分析:由得,即,可得,因为,故,所以,考点:三角恒等变换5【解析】试题分析:考点:1.两角和的正弦公式;2.特殊角函数值.6【解析】试题分析:,向左平移个单位得到,所以,的最小值为,故选.考点:1.两角和与差的正弦公式;2.函数图像的对称中心.7【解析】试题分析: =+=所以振幅为考点:本小题考查两角和与差的正弦公式以及辅助角公式,和的性质.点评:高考中对两角和与差的正弦、余弦、正切公式及二倍角公式的考查往往渗透在研究三角函数性质中,需要利用这些公式,先把解析式化为的形式,再进一步讨论其定义域、值域和最值、单调性、奇偶性、周期性、对称性等性质.8【解析】解:因为(0,),cos=,所以说为钝角,则sin=3/5,则sin()=sincos-cossin=9(1)0;(2)【解析】试题分析:(1)将代入解析式直接计算.(2)先用两角和差公式将展开,再用化一公式将其化简,将化简为的形式.将整体角代入正弦的单调增区间计算可得的单调增区间.试题解析:解:(1). 3分(2) 5分. 9分函数的单调递增区间为,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论