免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
33.2均匀随机数的产生1了解均匀随机数的概念2掌握利用计算器(计算机excel软件)产生均匀随机数的方法3会利用均匀随机数解决具体的有关概率的问题1随机数就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会一样,它可以帮我们模拟随机试验,特别是一些成本高、时间长的试验用随机模拟方法可起到降低成本、缩短时间的作用2随机数的产生方法(1)实例法掷骰子;掷硬币;抽签;从一叠纸牌中抽牌;正多边形旋转器,或钟表式图形转盘等等(2)计算器或计算机模拟法现在的大部分科学计算器都能产生01之间的均匀随机数(实数)例如:.利用计算器的rand函数可以产生0,1上的均匀随机数,试验结果是区间0,1内的任意一个实数,而且出现任何一个实数是等可能的.有的函数型计算器用键产生0,1上的均匀随机数计算机软件法:几乎所有的高级编程语言都有随机函数,借助随机函数可以产生一定范围的随机数用excel软件中产生0,1上的均匀随机数的函数rand()来模拟若要产生a,b上的均匀随机数,可使用变换rand()*(ba)a,试验的结果是产生ab之间的任何一个实数,并且出现ab之间任何一个实数都是等可能的若要产生a,b上的整数随机数可使用取整函数,int(rand()*(ba)a)得到ab之间的随机整数,并且ab之间的任何一个整数都是等可能出现的1如图,分别以正方形abcd的四条边为直径画半圆,重叠部分如图中阴影区域,若向该正方形内随机投一点,则该点落在阴影区域的概率为(b)a.b.c. d.2在面积为s的abc的边ab上任取一点p,则pbc的面积大于的概率是(c)a.b.c.d.3在边长为2的正三角形abc中,以a为圆心,为半径画一弧,分别交ab,ac于d,e.若在abc这一平面区域内任丢一粒豆子,则豆子落在扇形ade内的概率是_答案: 1用excel中的随机函数rand()如何产生下面范围内的数?(1)01内的随机数;(2)210内的随机数;(3)82内的随机数;(4)66内的随机数;(5)ab内的随机数;(6)ab内的整数随机数解析:(1)rand();(2)rand()*82;(3)rand()*108;(4)rand()*126;(5)rand()*(ba)a;(6)int(rand()*(ba)a)2下列命题不正确的是(d)a根据古典概型概率计算公式p(a)求出的值是事件a发生的概率的精确值b根据几何概型概率计算公式p(a)求出的值是事件a发生的概率的精确值c根据古典概型试验,用计算机或计算器产生的随机整数统计试验次数n和事件a发生的次数n1,得到的值是p(a)的近似值d根据几何概型试验,用计算机或计算器产生的均匀随机数统计试验次数n和事件a发生的次数n1,得到的值是p(a)的精确值3已知地铁列车每10 min一班,在车站停1 min,求乘客到达站台立即乘上车的概率解析:地铁列车每10 min一班,在车站停1 min可以看作在01 min这个时间段内,车停在停车点,在111 min这个时间段内行驶,乘客到达站台立即乘上车的条件是他在01 min这个时间段内到达站台设事件a乘客到达站台立即乘上车用计算机随机模拟这个试验步骤如下:s1用计算机产生一组0,1区间的均匀随机数a1rand;s2 经过伸缩变换a11*a1;s3 统计出试验总次数n和0,1内的随机数个数n1;s4 计算频率fn(a)n1/n即为概率p(a)的近似值用excel工作表s1选定a1格,键入“rand()*11”;再选定a1,按“ctrlc”;选定a2a1 000,按“ctrlv”此时a1a1 000均为0,11区间上的均匀随机数s2选定c1,键入“frequency(a1a20,1)”,表示a1a20中小于或等于1的数的个数;选定c2,键入“frequency(a1a50,1)”,表示a1a50中小于或等于1的数的个数;依此方法可在c3,c4,c5,c6格,得到a1a100,a1a200,a1a500,a1a1 000中小于或等于1的数的个数s3选定d1,键入“c1/20”;选定d2,键入“c2/50”;选定d3,键入“c3/100”;选定d4,键入“c4/200”;选定d5,键入“c5/500”;选定d6,键入“c6/1 000”可分别得到前20次、前50次、前100次、前200次、前500次、前1 000次试验中事件a发生的频率d1,d2,d3,d4,d5,d6;s4由频率可估计概率的近似值4如图,向边长为4的正方形内投飞镖,求飞镖落在中央边长为2的正方形内概率,并写出用计算机模拟该试验的算法解析:用几何概型概率计算方法可求得概率p.用计算机随机模拟这个试验步骤如下:s1用计数器n记录做了多少次飞镖试验,用计数器m记录其中有多少次投在中央的小正方形内,置初始值n0,m0;s2有函数rand()*42产生两组22的随机数x,y,x表示所投飞镖的横坐标,y表示所投飞镖的纵坐标;s3判断(x,y)是否落在中央的小正方形内,也就是看是否满足|x|1,|y|1,如果是则m的值加1,即mm1,否则m值保持不变;s4表示随机试验次数的记录器n加1,即nn1,如果还需要继续试验,则返回步骤s2,否则,程序结束程序结束后,飞镖投在小正方形内发生的频率表示概率的近似值,全班同学一块试验,看频率是否在附近波动,次数越多,越有可能稳定在附近5箱子里有3个黄球和6个红球,现在有放回地取球,求取出的球是黄球的概率,并写出用计算机模拟该试验的算法解析:用比例算法不难求得取出的球是黄球的概率p,用19这9个数字中的1,2,3表示黄球,4至9这6个数字表示红球用取整数随机函数int(rand()*81)来产生19中的整数随机数表示取到的球,有算法如下:s1置记录取球次数的记数器n0,取到黄球次数的计数器m0;s2用int(rand()*81)产生一个19之间的整数随机数x表示取到球的号数;s3如果x3,则mm1,否则m的值不变;s4nn1;s5如果还需要继续试验,则返回s2,否则结束程序程序结束后算出作为出现黄球概率的近似值6在长为18 cm的线段ab上任取一点m,并以线段am为边作正方形用随机模拟法估计该正方形的面积介于36 cm2与81 cm2之间的概率解析:正方形的面积只与边长有关,本题可以转化为在线段ab上任取一点m,使am的长度介于6 cm与9 cm之间设事件a正方形的面积介于36 cm2与81 cm2之间(1)利用计算器或计算机产生一组0到1区间的均匀随机数a1rand;(2)经过伸缩变换,aa1*18;(3)统计出试验总次数n和6,9内的随机数个数n1;(4)计算频率,即为概率p(a)的近似值算法为:input“n”;nm0doi1a18*rand()ifa6anda9thenmm1end ifii1loop untilinfm/nprint“概率的估计值为”;fend7利用随机模拟法近似计算下图中阴影部分(曲线y9x2与x轴和yx围成的图形)的面积解析:设事件a“随机向矩形内投点,所投的点落在阴影部分”(如下图)(1)利用计算器或计算机产生两组0到1区间的均匀随机数,x1rand,y1rand;(2)经过伸缩平移变换,x(x10.5)*6,yy1*9;(3)统计出试验总次数n和满足条件y9x2及yx的点(x,y)的个数n1;(4)计算频率fn(a),即为概率p(a)的近似值设阴影部分的面积为s,矩形的面积为9654.由几何概率公式得p(a).所以,阴影部分面积的近似值为:s.8甲乙二人用4张扑克牌玩游戏,分别是红桃2,红桃3,红桃4,方片4(方片4用4表示),他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张(1)设(i,j)分别表示甲、乙抽到的牌的数字,写出甲、乙二人抽到的牌的所有情况(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的情况有哪几种?解析:(1)甲乙二人抽到的牌的所有情况列表如下:甲乙23442空格(2,3)(2,4)(2,4)3(3,2)空格(3,4)(3,4)4(4,2)(4,3)空格(4,4) 4(4,2)(4,3)(4,4)空格(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的情况有两种:(3,4),(3,4)1本课时是在前几节学习过整数随机数和几何概型基础上,进一步学习均匀随机数的产生方法及如何应用均匀随机数进行随机模拟试验来求几何概型的概率近似值和不规则圆形的面积近似值等实际应用问题2随机模拟试验是研究事件概率的重要方法,用计算器或计算机模拟试验,首先需要把实际问题转化为可以用随机数来模拟试验结果的概率模型,也就是怎样用随机数刻画影响随机事件结果的量我们主要从以下几个方面来考虑:(1)由影响随机事件结果的量的个数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学《矿物加工工程-矿物加工工程概论》考试备考试题及答案解析
- 2025年大学《采矿工程-矿山通风与安全》考试参考题库及答案解析
- 2025医疗器械秋招试题及答案
- 第17课《壶口瀑布》教学设计 2023-2024学年统编版语文八年级下册
- 儿科医生考试题及答案
- 导游面试题及答案
- 春秋航空秋招面试题及答案
- 活动二《是是非非话一次性用品》(教学设计)-2023-2024学年四年级上册综合实践活动沪科黔科版
- 初中科学华师大版七年级上册2细胞教学设计
- 2025年大学《标准化工程-标准化法律法规》考试备考试题及答案解析
- 静脉留置针堵管预防策略与护理质量提升实践
- DB11-T 1860-2021 电子信息产品碳足迹核算指南
- 苏教版五年级上学期科学知识点
- 配电网工程施工规划与实施方案
- (2025年)消防安全知识竞赛试题(附答案)
- 2025年特种设备作业人员考试题库及答案流动式起重机Q2
- 2025-2030辣椒行业兼并重组案例与市场集中度分析
- 2025年共青团入团考试题库及完整答案
- 2025年破产管理人资产评估专项训练试卷
- 2025初一历史期中考试重点复习提纲
- 2025年下半年扬州大数据集团公开招聘30人笔试历年参考题库附带答案详解
评论
0/150
提交评论