高考数学大一轮复习 专题10 圆锥曲线与方程课件 理.ppt_第1页
高考数学大一轮复习 专题10 圆锥曲线与方程课件 理.ppt_第2页
高考数学大一轮复习 专题10 圆锥曲线与方程课件 理.ppt_第3页
高考数学大一轮复习 专题10 圆锥曲线与方程课件 理.ppt_第4页
高考数学大一轮复习 专题10 圆锥曲线与方程课件 理.ppt_第5页
已阅读5页,还剩106页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题10圆锥曲线与方程 第1节椭圆第2节双曲线第3节抛物线第4节曲线与方程 1 目录 600分基础考点 考法 700分综合考点 考法 考点56直线与椭圆的位置关系 综合问题17椭圆中的最值问题 范围问题 存在性问题 综合问题16椭圆中的定点问题 定值问题 考点55椭圆的标准方程与性质的初步运用 第1节椭圆 2 600分基础考点 考法 考法1求椭圆的标准方程 考法2椭圆性质的初步应用 考点55椭圆的标准方程与性质的初步运用 考法3椭圆定义的运用 椭圆中的焦点三角形问题 3 1 定义 2 标准方程 考点55椭圆的标准方程与性质的初步运用 3 性质 4 两焦点之间的距离 叫做椭圆的焦距 称为椭圆的焦点 1 椭圆的定义 考点55椭圆的标准方程与性质的初步运用 2 椭圆的标准方程 考点55椭圆的标准方程与性质的初步运用 3 椭圆的性质 考点55椭圆的标准方程与性质的初步运用 1 定义法 2 待定系数法 考法1求椭圆的标准方程 分清焦点位置 求出椭圆方程 1 b2 a2 c2 2 椭圆上任意一点到椭圆两焦点的距离之和等于2a 3 椭圆的一短轴端点到一焦点的距离等于实半轴长a 8 拓展 若给出焦点坐标 则横坐标 纵坐标中哪个值不为0 焦点就在哪个轴上 焦点位置确定 焦点位置不确定 1 设出相应的标准方程 2 根据条件确定关于a b c的方程组 3 解出a b 可能多解 注意合理取舍 考法1求椭圆的标准方程 2 待定系数法 9 10 d 11 考法2椭圆性质的初步应用 1 顶点 长轴 短轴等基本量 2 离心率 a x a b y b 0 e 1 在求范围或者求最值时 常用到不等关系 常考形式 常用方法 解题关键 借助图形建立关于a b c的关系式 等式或不等式 转化为关于e的关系式 根据条件 求离心率 已知离心率 求参数的取值 范围 1 直接求出a c 2 由a与b的关系求离心率 3 由椭圆的定义求离心率 4 构造关于a c的齐次式 注意 焦点不一定在x轴上 12 13 a 考法3椭圆定义的运用 椭圆中的焦点三角形问题 1 焦点三角形的定义 2 焦点三角形的特征 14 15 600分基础考点 考法 考法4直线与椭圆的位置关系 考点56直线与椭圆的位置关系 16 1 点与椭圆的位置关系 2 直线与椭圆的位置关系 考点56直线与椭圆的位置关系 相交 有2个交点 相切 有1个交点 相离 没有交点 一 直线与椭圆的位置关系的判定方法 二 求直线与椭圆相交的弦长问题的常用方法 1 代数法 联立直线与椭圆的方程 消去y 整理成关于x的一元二次 1 直线与椭圆相交 0 2 直线与椭圆相切 0 3 直线与椭圆相离 0 2 几何法 即通过判断直线经过椭圆内的某一点来证明直线与椭圆相交 注意 不能用类似的方法来判断相切或相离 1 设而不求 2 点差法 考法4直线与椭圆的位置关系 18 1 设而不求 步骤 联立直线与椭圆的方程 消元得到一元二次方程 整体代换求解出问题 注意 1 应先判断直线斜率是否存在 注意讨论斜率不存在的情况 2 若方程中含有参数 应注意 0对参数范围的限制 定义 根据需要设出变量 但并不直接求出其具体值 而是利用某种关系 如和 差 积 进行代换 考法4直线与椭圆的位置关系 19 20 2 点差法 考法4直线与椭圆的位置关系 一般步骤 设出交点a b和中点m 将交点坐标代入椭圆方程 将两式作差 整理得中点与直线斜率关系 将中点坐标代入 简化 21 22 24 700分综合考点 考法 综合点1椭圆中的定点定值问题 综合问题16椭圆中的定点问题 定值问题 25 1 两种解题思路 推理 计算 消去变量 得定点或定值 代入特殊情况 求出定点定值 验证所求与变量无关 综合点1椭圆中的定点定值问题 2 定点问题 建立含参直线系方程 根据过定点与参数无关 建立方程组 方程组的解即为定点 建立含参曲线方程 选取合适坐标 坐标满足方程 验证与参数无关 综合点1椭圆中的定点定值问题 1 选择适当变量 3 定值问题 2 表示出需要证明的量 3 化简变形消去参数 4 将待证明的量化为定值 动点的坐标 曲线方程 直线方程 中的参数 已知条件中涉及的未知量 综合点1椭圆中的定点定值问题 29 30 700分综合考点 考法 综合点2椭圆中的最值问题与范围问题 综合问题17椭圆中的最值问题 范围问题 存在性问题 综合点3椭圆中的存在性问题 31 求解最值 范围问题的方法 1 几何法 2 代数法 适用范围 条件 结论带有明显的几何意义 可利用曲线的定义 几何性质以及平面几何中的定理 性质等进行求解 椭圆的最值 范围方面的特性 椭圆上两点间的最大距离为2a 长轴长 椭圆上的点到焦点的距离的取值范围是 a c a c a c与a c分别表示椭圆焦点到椭圆上的点的最小与最大距离 综合点2椭圆中的最值问题与范围问题 32 2 代数法 注意 求解过程中注意完备性 不要漏解 如考虑直线的斜率是否存在 方程的最高次项系数等 用含参函数表示要求几何量 基本初等函数 导数判断函数的单调性 已知参数的取值范围或不等关系 圆锥曲线中有关量的取值范围 基本不等式 三角换元 正余弦的有界性 利用函数 不等式等方法求解 33 34 35 存在性问题 肯定顺推法 假设存在 用待定系数法设出 列出关于待定系数的方程 组 有实数解 则存在 否则不存在 综合点3椭圆中的存在性问题 37 目录 600分基础考点 考法 700分综合考点 考法 考点58直线与双曲线的位置关系 综合问题18双曲线中的定点 定值 最值 范围问题 考点57双曲线的标准方程与性质的运用 第2节双曲线 38 600分基础考点 考法 考法1双曲线的定义的应用 考法2求双曲线的标准方程 考点57双曲线的标准方程与性质的运用 考法3双曲线的简单几何性质 39 1 定义 2 标准方程 3 几何性质 考点57双曲线的标准方程与性质的运用 把平面内到两个定点f1 f2的距离之差的绝对值等于常数2a 2a小于 f1f2 的点的轨迹叫做双曲线 这两个定点叫做双曲线的焦点 两焦点间的距离叫做双曲线的焦距 注意 定义中 f1f2 2a 若 f1f2 2a 则轨迹是以f1 f2为端点的两条射线 若 f1f2 2a 则轨迹不存在 考点57双曲线的标准方程与性质的运用 1 定义 2 标准方程 3 几何性质 1 焦点三角形问题的特征 2 等轴双曲线 考法1双曲线的定义的应用 1 定义 2 特征 即实轴和虚轴等长的双曲线 两条渐近线互相垂直 等轴双曲线上任意一点到中心的距离是它到两个焦点的距离的比例中项 42 b 43 1 定义法 2 待定系数法 分清焦点位置 求出双曲线方程 1 c2 a2 b2 2 双曲线上任意一点到双曲线两焦点的距离的差的绝对值等于2a 注意 满足 pf1 pf2 2a 0 2a f1f2 的曲线为双曲线的一支 应注意合理取舍 考法2求双曲线的标准方程 44 焦点位置确定 焦点位置不确定 1 设出相应的标准方程 2 根据条件确定关于a b c的方程组 3 解出a b 可能多解 注意合理取舍 2 待定系数法 考法2求双曲线的标准方程 分类讨论 45 46 a 47 注意 双曲线的离心率e 1 求离心率 建立方程 化简 求解 验算取舍 法一直接求出a c的值 法二利用a b的关系 法三利用a与c的关系 考法3双曲线的简单几何性质 48 2 求渐近线 已知双曲线方程求渐近线 已知渐近线求双曲线方程 令双曲线右边的常数为0 计算 性质 六点 四线 两形 两个焦点 两个顶点 两个虚轴的端点 两条对称轴 两条渐近线 中心 焦点以及虚轴端点构成的三角形 双曲线上一点和两焦点构成的三角形 49 50 a 51 52 a 600分基础考点 考法 考法4直线与双曲线的位置关系 考点58直线与双曲线的位置关系 53 直线与双曲线有三种位置关系 相交 相切 相离 方程组有两组解 方程组有一组解 方程组无解 直线平行于双曲线的渐近线时可能只有一个交点但这时不相切 考点58直线与双曲线的位置关系 一 直线与双曲线的位置关系 二 直线与双曲线相交的弦长问题 位置关系的判断 位置关系的应用 相切问题 弦长问题 弦中点问题 代数法 几何法 考法4直线与双曲线的位置关系 55 代数法 斜率不存在 斜率存在 联立直线与双曲线方程 消元化简得二次式 二次项系数为0 二次项系数不为0 只有一个交点 但直线与渐近线平行不相切 0 相交 0 相切 0 相离 考法4直线与双曲线的位置关系 56 几何法 设渐近线斜率为 k 直线的斜率等于 k时 直线过p点且斜率在 k k 上时 直线与曲线左右两支各交于一点 如图中直线 直线过p点且斜率在 k k 上 直线与双曲线交于一点如图 与曲线的右支交于两点 如图 与曲线右支相切 如图 与曲线相离 如图 考法4直线与双曲线的位置关系 57 58 59 60 61 62 700分综合考点 考法 综合点1双曲线中定点 定值 最值 范围问题 综合问题18双曲线中的定点 定值 最值 范围问题 63 求双曲线中的最值或范围有三种方法 1 定义法 2 几何法 题中给出的条件有明显的几何特征 则考虑用图象与性质来解决 转化为平面几何问题求解 如三角形两边之差小于第三边 3 函数法 若题中给出的条件和结论的几何特征不明显 则可以建立目标函数 再求这个函数的最值或范围 求解方法也可参见椭圆中有关部分 1 定点 定值问题 2 最值 范围问题 3 常用性质 综合点1双曲线中定点 定值 最值 范围问题 1 定点 定值问题 2 最值 范围问题 3 常用性质 综合点1双曲线中定点 定值 最值 范围问题 1 定点 定值问题 2 最值 范围问题 3 常用性质 综合点1双曲线中定点 定值 最值 范围问题 a 69 目录 600分基础考点 考法 700分综合考点 考法 考点60直线与抛物线的位置关系 综合问题19椭圆抛物线中的定点 定值 最值 范围问题 考点59抛物线的标准方程与性质的运用 第3节抛物线 70 600分基础考点 考法 考法1抛物线定义的运用 考法2抛物线的标准方程与性质 71 考点59抛物线的标准方程与性质的运用 平面内与一个定点f和一条定直线l l不经过定点f 距离相等的点的轨迹是抛物线 定点f叫做抛物线的焦点 定直线l叫做抛物线的准线 1 抛物线的定义 2 抛物线的标准方程及简单几何性质 考点59抛物线的标准方程与性质的运用 1 抛物线的定义 2 抛物线的标准方程及简单几何性质 考点59抛物线的标准方程与性质的运用 1 定义的应用 2 焦点弦 考法1抛物线定义的运用 利用定义将到焦点的距离转化为到准线的距离 74 考法1抛物线定义的运用 1 定义的应用 2 焦点弦 75 76 1 抛物线的标准方程的求法 2 抛物线的简单几何性质 1 定义法 2 待定系数法 分清焦点位置 求出抛物线方程 注意 标准方程有四种形式 要注意选择 77 考法2抛物线的标准方程与性质 焦点位置确定 焦点位置不确定 1 设出标准方程 2 确定关于p的方程组 3 解出p 2 待定系数法 焦点所在坐标轴确定 开口方向不确定 只需设成y2 mx m 0 若m 0 开口向右 若m 0 开口向左 若m有2解 则抛物线方程哟2个 焦点所在坐标抽开口均不确定 需设成y2 m1x m1 0 x2 m2x m 0 78 考法2抛物线的标准方程与性质 2 抛物线的简单几何性质 准线垂直于一次项自变量一致的轴 且垂足的非零坐标值等于一次项系数的1 4的相反数 焦点所在的轴与一次项自变量一致 且焦点的非零坐标值等于一次项系数的1 4 79 考法2抛物线的标准方程与性质 c 80 81 b 600分基础考点 考法 考法3直线与抛物线的位置关系 考点60直线与抛物线的位置关系 82 1 直线与抛物线的位置关系 2 直线与抛物线只有一个公共点的问题 相交 相切 相离 方程组有两组解 方程组有一组解 方程组无解 含有两个公共点和一个公共点的相交情况 注意讨论与抛物线对称轴平行的情况 考点60直线与抛物线的位置关系 点p在抛物线内 点p在抛物线上 点p在抛物线外 有且只有一条 有且只有两条 有且只有三条 过点p且和抛物线只有一个公共点的直线 直线与抛物线的对称轴平行 只有一个交点 直线与抛物线 有两个交点 一定相交 相交 不一定有两个交点 1 直线与抛物线位置关系 考法3直线与抛物线的位置关系 设直线为y kx m抛物线为y2 2px p 0 直线斜率存在 直线斜率不存在 利用数形结合判断 联立 消元 化简得k2x2 2 mk p x m2 0 有一个公共点 直线平行于抛物线的对称轴或与对称轴重合 k 0 k 0 0相交 0相切 0相离 85 2 直线与抛物线相交 考法3直线与抛物线的位置关系 常考形式 常用方法 借助弦长求参数 借助根与系数的关系求弦长 弦的中点 利用定义转化求解弦长 采用 设而不求法 点差法 求解弦的中点问题 注意 0这一隐含条件 86 87 88 700分综合考点 考法 综合点1抛物线中定点 定值 最值 范围问题 综合问题19抛物线中的定点 定值 最值 范围问题 89 1 定义法 转化法 综合点1抛物线中定点 定值 最值 范围问题 2 几何法 3 函数法 列出关于参数的函数关系式 代入由题目条件列出的不等式 建立最值目标函数 转化为二次函数 利用导数法 基本不等式法求解 转化为平面几何问题求解 如三角形两边之和大于第三边 到准线的距离 构造出 两点之间线段最短 解题 利用 直线外一点与直线上所有点的连线中垂线段最短 解题 注意 抛物线上的点中 顶点与抛物线的准线距离最近 到焦点的距离 求抛物线中的最值或范围 90 91 92 目录 600分基础考点 考法 考点63相关动点法求轨迹方程 考点61直接法求轨迹方程 第4节曲线与方程 考点62定义法 待定系数法 求轨迹方程 93 600分基础考点 考法 考法1直接法求轨迹方程 考点61直接法求轨迹方程 94 1 曲线与方程在直角坐标系中 如果某曲线c 看作点的集合或适合某种条件的轨迹 上的点与一个二元方程f x y 0的实数解建立了如下的关系 1 曲线上的点的坐标都是这个方程的解 2 以这个方程的解为坐标的点都是曲线上的点 那么这个方程叫做曲线的方程 这条曲线叫做方程的曲线 考点61直接法求轨迹方程 1 一般步骤 2 说明 考法1直接法求轨迹方程 建系设点 找等量关系 代点 化简 证明 建立适当的坐标系 用有序实数对 x y 表示曲线上任意一点m的坐标 写出适合条件p的点m的集合p m p m 用坐标表示条件p m 列出方程f x y 0 化方程f x y 0为最简形式 证明以化简后的方程的解为坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论