


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第14章整式的乘除与因式分解第4节因式分解(第1课时)学习目标1了解因式分解的意义,并能够理解因式分解与多项式乘法的区别与联系.2会用提公因式法进行因式分解.3树立学生全面认识问题、分析问题的思想,提高学生的观察能力、逆向思维能力.学习重点:掌握提取公因式,公式法进行因式分解.学习难点:怎样进行多项式的因式分解,如何能将多项式分解彻底.学习过程一、自主学习问题一:1. 回忆:运用前两节所学的知识填空:(1)2(x3)_;(2)x2(3x)_;(3)m(abc)_.2.探索:你会做下面的填空吗?(1)2x6( )( );(2)3x2x3( )( );(3)mambmc( )2.3.归纳:“回忆”的是已熟悉的 运算,而要“探索”的问题,其过程正好与“回忆” ,它是把一个多项式化为几个整式的乘积形式,这就是因式分解(也叫分解因式).4.反思:分解因式的对象是_,结果是_的形式.二、合作探究问题二:1.公因式的概念一块场地由三个矩形组成,这些矩形的长分别为a,b,c,宽都是m,用两个不同的代数式表示这块场地的面积. _, _填空:多项式有 项,每项都含有 , 是这个多项式的公因式.3x2+x3有 项,每项都含有 , 是这个多项式的公因式. pa+pb+pc有 项,每项都含有 , 是这个多项式的公因式. 多项式各项都含有的 ,叫做这个多项式各项的公因式.2提公因式法分解因式.如果一个多项式的各项含有公因式,那么就可以 ,从而将多项式化成两个 的乘积的形式,这种分解因式的方法叫做提公因式法.如:mambmcm(abc)3.辨一辨:下列各式从左到右的变形,哪些是因式分解?(1)4a(a2b)4a28ab;( )(2)6ax3ax23ax(2x); ()(3)a24(a2)(a2);( )(4)x23x2x(x3)2 ()(5)36 () (6)()试一试: 用提公因式法分解因式:(1)3x+6=3( ) (2)7x2-21x=7x( )(3)24x3+12x2 -28x=4x( ) (4)-8a3b2+12ab3c-ab=-ab( )5.公因式的构成:系数:各项系数的最大公约数;字母:各项都含有的相同字母;指数:相同字母的最低次幂.6.方法技巧: (1)、用提公因式法分解因式的一般步骤:a、确定公因式b、把公因式提到括号外面后,用原多项式除以公因式所得商作为另一个因式.(2)、为了检验分解因式的结果是否正确,可以用整式乘法运算来检验.问题三:1.把下列多项式分解因式:(1)(2) (3) (4)三课堂练习:1.课本练习p115练习1,2,3题2.练一练:把下列各式分解因式: (1)ma+mb (2)5y3-20y2 (3)四盘点提升1把下列各式分解因式:(1)-4kx-8ky (2)-4x+2x2 (3)-8m2 n-2mn (4)(2a+b)(2a-3b)-3a(2a+b)(5)4(x-y)3-8x(y-x)2 (6)(1+x)(1-x)-(x-1)2.利用因式分解计算:213.14+623.14+173.14五达标检测1下列各式中,从等式左边到右边的变形,属因式分解的是 (填序号) 2若分解因式,则m的值为 .3把下列各式分解因式:8m2n+2mn 12xyz-9xy2 2a(yz)3b(zy) (4)a(a+1)+2(a+1)4把下列各式分解因式: (1)a2b-2ab2 +ab (2)3x33x29x (3)-20x2y2-15xy2+25y3 5把下列各式分解因式:(1)-24x3+28x2-12x (2)-4a3b3+6a2b-2ab (3)6a(m-2)+8b(m-2) 六小结反思答案:1.(1)am+bm+cm (a+b+c)m(2)2 2 22 x2 x2 3 p p3. (1)x+2 (2)x-3 (3)6x2+3x-7 (4)8a2b-12b2-1问题三:1.(1)-5a(a-5) (2)3a(a-3b)(3)4ab2(2a2+3bc) (4)(2a-3)(b+c)三2.(1)m(a+b) (2)5y2(y+2)(y-2)(3)(x-y)(3m+2n)四1.(1)-4k(x+2y) (2)-2x(2-x)(3)-2mn(4m+1) (4)-(2a+b)(a+3b)(5)-4(x-y)2(x+y) (6)(1-x)(2+x)2.3.14(21+62+17)=314五1.2.-23.(1)2mn(4m+1) (2)3xy(4z-3y)(3)(y-z)(2a+3b) (4)(a+1)(a+2)4.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海外工程项目施工人员劳务派遣与保障协议
- 外资企业拉美市场运营专员职务聘任与培训合同
- 网络内容安全审查算法技术许可及数据共享合同
- 数据安全忠诚度保障协议及知识产权保护
- 传染病预防措施
- 外科护理胸部损伤
- 护理安全案例分析
- 2026届高考语文作文模拟写作:等风与追风
- 肿瘤护士进修体系构建
- 剖宫产患者的对症护理
- 2025年军队文职考试《公共科目》试题与参考答案
- 生物实验室安全责任奖罚制度
- 2024年全国职业院校技能大赛高职组(烹饪赛项)备赛试题库(含答案)
- 《让子弹飞》电影赏析
- 《观潮》教学课件
- 木工车间粉尘清扫制度
- 甲状腺乳头状癌热消融治疗专家共识2024版
- 04S519小型排水构筑物(含隔油池)图集
- 附件1:肿瘤防治中心评审实施细则2024年修订版
- 委托书万能模板快来保存2024年
- 光伏电站物料清单模板
评论
0/150
提交评论