




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行四边形教学设计(第2课时)广安市广安区肖溪中学袁利梅 一、内容和内容解析1内容平行四边形对角线的性质2内容解析这节课承接了上一节平行四边形的性质:对边相等,对角相等,本节继续研究对角线互相平分的性质,课本先设置一个探究栏目,让学生发现结论,形成猜想,然后利用三角形全等证明这个结论,对角线互相平分是平行四边形的重要性质,在九年级上册“旋转”一章,通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分,学生会有进一步体会平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用.这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用是中心对称图形的具体化,是以后学习平行四边形判定的重要依据教科书例2是的平行四边形对角线的性质的直接运用,而且涉及勾股定理以及平行四边形面积的计算基于以上分析,本节课的教学重点是:平行四边形对角线性质的探究与应用 二、目标和目标解析1.目标(1)探究并掌握平行四边形对角线互相平分的性质(2)能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题2.目标解析达成目标(1)的标志是:能发现平行四边形对角线互相平分这一结论并形成猜想,会利用三角形全等证明猜想达成目标(2)的标志是:能发现平行四边形的边、角、对角线等基本要素间的关系,会运用等量代换等进行线段长、图形面积等的计算,掌握简单的逻辑论证.三、教学问题诊断分析本节课在已学习了三角形全等证明,平行四边形定义,平行四边形边、角的性质的基础上,在积累了一定的经验的情况下学习本节课内容例2是既是巩固平行四边形对角线互相平分的性质,又复习了勾股定理以及平行四边形面积的计算这些问题常常需要运用勾股定理求平行四边形的高或底这些问题比较综合,需要灵活运用所学的有关知识加以解决基于以上分析,本节课的教学难点是:综合运用平行四边形的性质进行有关的论证和计算四、教学过程设计 引言:前面我们研究了平行四边形的边、角这两个基本要素的性质,下面我们研究平行四边形对角线的性质.1 引入要素探究性质问题1 我们研究平行四边形边、角这两个要素的性质时,经历了怎样的过程?师生活动:学生回顾我们研究平行四边形边、角这两个要素的性质时经历的过程,并请学生代表回答.设计意图:回顾研究研究平行四边形边、角这两个要素的性质时经历的过程,总结研究平行四边形的性质的一般活动过程(即观察、度量、猜想、证明等),积累研究图形的活动经验,为本节课研究对角线要素作准备.问题2如图,在ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB与OD有什么关系?你能证明发现的结论吗?师生活动:启发学生去发现并猜想:平行四边形的对角线互相平分你能证明上述猜想吗?教师操作投影仪,提出下面问题:图中有哪些三角形全等?哪些线段是相等的?请同学们用多种方法加以验证学生合作学习,交流自己的思路,并讨论不同的验证思路教师点拨:图中有四对三角形全等,分别是:AOBCOD,AODCOB,ABDBCD,ADCCBA有如下线段相等:OA=OC,OB=OD,AD=BC,AB=DC证明中应用到“AAS”,“ASA”证明师生归纳整理:定理:平行四边形的对角线互相平分我们证明了平行四边形具有以下性质: (1)平行四边形的对边相等; (2)平行四边形的对角相等; (3)平行四边形的对角线互相平分. 设计意图:应用三角形全等的知识,猜想并验证所要学习的内容 .例题解析应用所学 问题3如图,在ABCD中,AB=10,AD=8,ACBC,求BC、CD、AC、OA的长以及ABCD的面积师生活动:教师分析解题思路, 可以利用平行四边形对边相等求出BC=AD=8,CD=AB=10,在求AC长度时,因为ACB=90,可以在RtACB中应用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面积是48,学生板演解题过程变式追问:在上题中,直线EF过点O,且与AB,CD分别相交于点E,F求证:OE=OF图中还在哪些相等的量?设计意图:对于几何计算或证明,分析思路和方法是根本,本题既巩固平行四边形对角线互相平分的性质,又复习勾股定理和平行四边形面积计算的知识,通过本例,让学生学会如何分析,渗透“综合分析法” 让学生理解平行四边形对角线互相平分的性质的应用价值.课堂练习,巩固深化 (1)ABCD的周长为60cm,对角线交于O,AOB的周长比BOC的周长大8cm,则AB、BC的长分别是_(2)如图,在ABCD中,BC=10,AC=8,BD=14,AOD的周长是多少?ABC与DBC的周长哪个长?长多少?设计意图:通过练习,深化理解平行四边形的性质,提高选择运用平行四边形定义、性质解决问题的能力. 4.反思与小结(1)我们学习了平行四边形的哪些
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南川区2025二季度重庆南川区事业单位考核招聘73人笔试历年参考题库附带答案详解
- 北京市2025国家信息中心面向应届毕业生招聘16人笔试历年参考题库附带答案详解
- 万荣县2025山西运城市万荣现代农业产业示范区市场化选聘高级管理人员1人笔试历年参考题库附带答案详解
- 2025甘肃省金羚集团药业有限公司招聘18人笔试参考题库附带答案详解
- 2025广西梧州市龙投人力资源有限公司招聘13人笔试参考题库附带答案详解
- 2025年河南新乡市某国有供应链公司招聘供应专员岗位6人笔试参考题库附带答案详解
- 卸煤安全培训计划课件
- 2025年国航股份新疆分公司“三地招聘”活动专项招聘5人笔试参考题库附带答案详解
- 2025年中建科工科工人招募800人笔试参考题库附带答案详解
- 2025四川成都精密电机有限公司招聘电机测试技术员等岗位9人笔试参考题库附带答案详解
- PICC堵管原因与再通方法
- 标杆地产五星级酒店精装修标准
- 脑器质性精神障碍患者的护理查房
- (高清版)TDT 1013-2013 土地整治项目验收规程
- 初中数学分层作业设计举例-有理数
- 西方经济学简史
- 信息管理系统的设计与实现
- 新闻报道与舆论导向
- 局放实验操作规程
- 透明土实验技术的研究进展
- 戴海崎心理与教育测量第4版课后习题答案
评论
0/150
提交评论