



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3讲 函数的奇偶性与周期性一、选择题1设f(x)为定义在r上的奇函数当x0时,f(x)2x2xb(b为常数),则f(1)等于()a3 b1 c1 d3解析由f(0)f(0),即f(0)0.则b1,f(x)2x2x1,f(1)f(1)3.答案d2已知定义在r上的奇函数,f(x)满足f(x2)f(x),则f(6)的值为 ()a1 b0 c1 d2解析(构造法)构造函数f(x)sin x,则有f(x2)sinsin xf(x),所以f(x)sin x是一个满足条件的函数,所以f(6)sin 30,故选b.答案b3定义在r上的函数f(x)满足f(x)f(x2),当x3,5时,f(x)2|x4|,则下列不等式一定成立的是 ()aff bf(sin 1)f(cos 1)cff(sin 2)解析当x1,1时,x43,5,由f(x)f(x2)f(x4)2|x44|2|x|,显然当x1,0时,f(x)为增函数;当x0,1时,f(x)为减函数,cos,sin ,又fff,所以ff.答案a4已知函数f(x)则该函数是 ()a偶函数,且单调递增 b偶函数,且单调递减c奇函数,且单调递增 d奇函数,且单调递减解析当x0时,f(x)2x1f(x);当x0时,f(x)12(x)12xf(x)当x0时,f(0)0,故f(x)为奇函数,且f(x)12x在0,)上为增函数,f(x)2x1在(,0)上为增函数,又x0时12x0,x0时2x10时是单调函数,则满足f(2x)f的所有x之和为_解析 f(x)是偶函数,f(2x)f,f(|2x|)f,又f(x)在(0,)上为单调函数,|2x|,即2x或2x,整理得2x27x10或2x29x10,设方程2x27x10的两根为x1,x2,方程2x29x10的两根为x3,x4.则(x1x2)(x3x4)8.答案 8三、解答题11已知f(x)是定义在r上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)yf(x)xf(y)(1)求f(1),f(1)的值;(2)判断函数f(x)的奇偶性解(1)因为对定义域内任意x,y,f(x)满足f(xy)yf(x)xf(y),所以令xy1,得f(1)0,令xy1,得f(1)0.(2)令y1,有f(x)f(x)xf(1),代入f(1)0得f(x)f(x),所以f(x)是(,)上的奇函数12已知函数f(x)对任意x,yr,都有f(xy)f(x)f(y),且x0时,f(x)0,f(1)2.(1)求证f(x)是奇函数;(2)求f(x)在3,3上的最大值和最小值(1)证明令xy0,知f(0)0;再令yx,则f(0)f(x)f(x)0,所以f(x)为奇函数(2)解任取x1x2,则x2x10,所以f(x2x1)fx2(x1)f(x2)f(x1)f(x2)f(x1)0,所以f(x)为减函数而f(3)f(21)f(2)f(1)3f(1)6,f(3)f(3)6.所以f(x)maxf(3)6,f(x)minf(3)6.13.已知函数f(x)是(,)上的奇函数,且f(x)的图象关于x1对称,当x0,1时,f(x)2x1,(1)求证:f(x)是周期函数;(2)当x1,2时,求f(x)的解析式;(3)计算f(0)f(1)f(2)f(2013)的值解析 (1)证明函数f(x)为奇函数,则f(x)f(x),函数f(x)的图象关于x1对称,则f(2x)f(x)f(x),所以f(4x)f(2x)2f(2x)f(x),所以f(x)是以4为周期的周期函数(2) 当x1,2时,2x0,1,又f(x)的图象关于x1对称,则f(x)f(2x)22x1,x1,2(3) f(0)0,f(1)1,f(2)0,f(3)f(1)f(1)1又f(x)是以4为周期的周期函数f(0)f(1)f(2)f(2013)f(2 012)f(2 013)f(0)f(1)1.14已知函数f(x)的定义域为r,且满足f(x2)f(x)(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0x1时,f(x)x,求使f(x)在0,2 014上的所有x的个数(1)证明f(x2)f(x),f(x4)f(x2)f(x)f(x),f(x)是以4为周期的周期函数(2)解当0x1时,f(x)x,设1x0,则0x1,f(x)(x)x.f(x)是奇函数,f(x)f(x),f(x)x,即f(x)x.故f(x)x(1x1)又设1x3,则1x21,f(x2)(x2)又f(x)是以4为周期的周期函数f(x2)f(x2)f(x),f(x)(x2),f(x)(x2)(1x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南液压桩施工方案
- 2025年农产品质量安全监测技能知识考试题库(附含答案)
- 2025年度(CPA)注册会计师考试《税法》真题模拟训练(含答案)
- 电商直播基地2025年人才培养与培训体系研究报告
- 图形编码课件
- 样板工程观摩会方案(3篇)
- 2025年新能源车用氢燃料电池产业链布局与投资机会报告
- 电商平台社交电商生态构建策略2025:可行性研究报告
- 图书馆的分类
- 2026年新能源产业技术创新与2025-2032年全球产业布局前瞻研究报告
- GB/T 29602-2013固体饮料
- GB/T 21709.1-2008针灸技术操作规范第1部分:艾灸
- 工伤事故管理表格
- 机动车维修行业危险废物管理制度范文六篇
- 喷雾干燥课件
- 《网页设计与制作Dreamweaver-cs6》教学课件(全)
- 审核检查表(ISO13485、GMP、体考指南、QSR820)
- 宿舍教室报修维修登记表
- 剪映入门教程PPT
- 五四制青岛版2022-2023五年级科学上册第一单元第1课《细胞》课件(定稿)
- 律师事务所合同纠纷法律诉讼服务方案
评论
0/150
提交评论