全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.2 直角三角形教学目标1、 进一步掌握推理证明的方法,发展演绎推理能力.2、 了解勾股定理及其逆定理的证明方法.3、 结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立.教学重点和难点重点:勾股定理及其逆定理难点:结合具体例子了解逆命题的概念教学方法观察实践法,分组讨论法,讲练结合法,自主探究法教学手段多媒体课件教学过程一、 从学生原有的认知结构提出问题上学期,我们学习了命题和定理。表示判断的句子就是命题,经过证明的真命题称为定理。 复习练习1. 每个命题都是由 、 两部分组成。命题“对顶角相等”的条件是 ,结论是 。2. “对顶角相等”是 (填“真”、“假”)命题;“我们是小学生” 是 命题。3. 把“等腰三角形两底角相等”改写成“如果那么”的形式: 。4. 如图,abc是rt,根据勾股定理可得: 。二、 师生共同研究形成概念我们曾经探索过直角三角形的哪些性质和判定方法?定理:直角三角形的两个锐角互余.定理:有两个角是互余的三角形是直角三角形.1、 勾股定理以前,我们曾经利用数方格和图形割补的方法验证了勾股定理,而此处的勾股定理要通过证明推理才能得出其正确性。勾股定理的证明方法有很多,证明过程放在课后的“读一读”。定理 直角三角形两条直角边的平方和等于斜边的平方勾股定理是在三角形为直角三角形的前提下描绘三边之间关系的,利用勾股定理,已知直角三角形的两边可求第三边。 练习:直角三角形的两直角边为9、12,则斜边为 ;直角三角形的斜边为13,其中一条直角边为5,则另一条直角边为 。2、 勾股定理的逆定理勾股定理的逆定理的证明方法对学生来说有一定的难度,因此,只要学生能接受证明的方法和过程即可。演示作图过程,让学生易理解如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形 练习:如果一个三角形的三边分别是6、10、8,则这个三角形是 三角形。3、 讲解例题例1 如图,bada于a,ad = 12,dc = 9,ca = 15,求证:badc。分析:利用勾股定理的逆定理,证明d是直角,再根据同旁内角互补,两直线平行解决。4、互逆命题 议一议 书本p 15 议一议勾股定理和勾股定理的逆定理中的条件和结论是互换的。通过几对数学和生活中的命题,让学生观察这些成对命题的结论与条件之间的关系,要求学生归纳出它们的共性,以得到互逆命题的概念。在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。注意: 互逆命题是相对两个命题而言的,单独一个命题称不上互逆命题。 一个命题是真,它的逆命题可能是真,可能是假。 练习:说出下列命题的逆命题,并判断每对命题的真假。1、初三(6)班有62位同学; 2、等边对等角; 3、对顶角相等; 4、平行四边形的两组对边相等; 5、正方形的四条边都相等;5、互逆定理 想一想 书本p 16 想一想这个命题的条件和结论都比较明显、简单,写出其逆命题对学生来说应该没有什么问题,关键是让学生验证逆命题的正确性,并能意识到一对互逆命题的真假性不一定一致。一个命题是真命题,它的逆命题却不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。 练习:找出下列定理有哪些存在逆定理,并把它找出来。 1)矩形是平行四边形 2)内错角相等,两直线平行 3)如果,则 4)全等三角形对应角相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程测量专业面试技巧分享
- 外科岗位招聘实战模拟医学知识与技能考察案例分析
- 广告公司创意策划与客户沟通流程
- 土地出让流程与面试技巧
- 工会法律顾问企业法律顾问与工会法律顾问协作方案
- 审计工作实务操作手册
- 媒体编辑工作流程与新媒体运营技巧
- 干部培训后勤保障人员工作手册
- 反洗钱培训师培训效果评估总结
- 抖音直播带货话术技巧与营销策略全解析
- 华为ICT大赛2024-2025中国区实践赛(昇腾Al赛道)省决赛考试题库及答案(供参考)
- 高三艺考培训班开学
- 开原市污水处理厂提标改造可研报告
- 核和辐射事故医学应急演练
- GB/T 12979-2024近景摄影测量规范
- JB-T 14320-2022 氧气用止回阀
- 深基坑拉森钢板桩支护方案完整版
- 小学二年级乘除法口算题每页100道
- 第三单元一《伐檀》公开课一等奖创新教案-【中职专用】(中职语文高教版2023-2024-基础模块上册)
- 山西2023年晋商银行校园招聘柜员岗考试参考题库含答案详解
- 维克多高中英语3500词汇
评论
0/150
提交评论