高中数学(课前预习+课初+课中+课末+课后)§14 函数的单调性教案 新人教A版必修1.doc_第1页
高中数学(课前预习+课初+课中+课末+课后)§14 函数的单调性教案 新人教A版必修1.doc_第2页
高中数学(课前预习+课初+课中+课末+课后)§14 函数的单调性教案 新人教A版必修1.doc_第3页
高中数学(课前预习+课初+课中+课末+课后)§14 函数的单调性教案 新人教A版必修1.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

必修第一章1-4函数的单调性【课前预习】阅读教材p27-32完成下面填空1设函数的定义域为,区间 如果对于区间内的任意两个值,当时,都有,那么就说在区间上是 ,称为的 如果对于区间内的任意两个值,当时,都有,那么就说在区间上是 ,称为的 2对函数单调性的理解(1) 函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域;(2) 函数单调性定义中的,有三个特征:一是任意性;二是大小,即;三是同 属于一个单调区间,三者缺一不可;(4)关于函数的单调性的证明,如果用定义证明在某区间上的单调性,那么就要用严格的四个步骤,即取值;作差;判号;下结论。但是要注意,不能用区间上的两个特殊值来代替。而要证明在某区间上不是单调递增的,只要举出反例就可以了,即只要找到区间上两个特殊的,若,有即可。(5)函数的单调性是对某个区间而言的,所以受到区间的限制,如函数分别在和内都是单调递减的,但是不能说它在整个定义域即内是单调递减的,只能说函数的单调递减区间为和(6)一些单调性的判断规则:若与在定义域内都是增函数(减函数),那么在其公共定义域内是增函数(减函数)。复合函数的单调性规则是“异减同增”【课初5分钟】课前完成下列练习,课前5分钟回答下列问题-6 -4 -3 -2 -1 1 2 31设图象如下,完成下面的填空增区间有: 减区间有: 2试画出函数的图象,并写单调区间3 写出函数的单调区间强调(笔记):【课中35分钟】边听边练边落实4若偶函数在上是增函数,则下列关系式中成立的是a bc d5 若函数在上是单调函数,则的取值范围是 a b c d6.函数的单调递减区间是_7. 利用函数的单调性求函数的值域8. 求函数单调递增区间强调(笔记):【课末5分钟】 知识整理、理解记忆要点1. 2. 3. 4. 【课后15分钟】 自主落实,未懂则问1下列函数中,在区间上是增函数的是a b c d2已知在区间上是增函数,则的范围是( )a. b. c. d.3下列四个命题:(1)函数在时是增函数,也是增函数,所以是增函数;(2)若函数与轴没有交点,则且;(3) 的递增区间为;(4) 和表示相等函数。其中正确命题的个数是(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论