



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9.5 因式分解(一)-提公因式法课 题课时分配本课(章节)需 11 课时本 节 课 为 第 7 课时因式分解(一)- 提公因式法教学目标1、 理解因式分解的意义及其与整式乘法的区别和联系2、 了解公因式的概念,掌握提公因式的方法3、 培养学生的观察、分析、判断及自学能力重 点掌握公因式的概念,会使用提公因式法进行因式分解。难 点1、正确找出公因式2、正确用提公因式法把多项式进行因式分解教学方法讲练结合、探索交流课型新授课教具投影仪教 师 活 动学 生 活 动一、情景设置:1.计算:2. 单项式乘多项式法则:a(bcd)= abacad.二、新课讲解:1.公因式左边是多项式,右边是a与(b +c+d)的乘积,这里a是多项式ab +ac +ad的各项ab、ac 、ad都含有的因式,称为多项式各项的公因式。确定多项式的公因式的方法, 对数字系数取各项系数的最大公约数, 各项都含有的字母取最低次幂的积作为多项式的公因式, 公因式可以是单项式 , 也可以是多项式, 如:ax+bx 中的公因式是x. 多项式 a(x+y)+b(x+y) 的公因式是 (x+y). 如果多项式的第一项系数是负的, 一般要先提出 “一” 号, 使括号内的首项系数变为正, 在提出 “一” 号时, 注意括号里的各项都要变号.关键是确定多项式各项的公因式, 然后, 将多项式各项写成公因式与其相应的因式的积, 最后再提公因式, 把公因式写在括号外面, 然后再确定括号里的因式, 这个因式 ( 括号里的 ) 的项数与原多项式的项数相同, 如果项数不一致就漏项了.完成“议一议”因式分解:把一个多项式写成几个整式积的形式叫做多项式的因式分解。例题1:把 分解因式例题2把下列各式分解因式:1 -2m3 + 8m2 - 12m完成“想一想”,要放手让学生去做 如果多项式的各项含有公因式,那么就可以把这个公因式提出来,把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法例题3:把下列各式分解因式: - 3x2 + 18x - 27; 18a2 - 50;2 2x2 y - 8xy + 8y。练习:第82页第1、2、3题小结:提公因式法分解因式的关键是确定公因式,当公因式是隐含的时候,多项式要经过适当的变形;变形的过程要注意符号的相应改变我们已经学习了提公因式法,要注意公因式法要一次提完。, 教学素材:a组题:1、 下列多项式因式分解正确的是 ( ) (a) (b) (c) (d) 2、(1) 的公因式是 (2) (3) 3、 把下列各式分解因式. (1) (2) (3) (4) 4、把下列各式分解因式:(1) 6p(p+q)-4p(p+q);(2) (m+n)(p+q)-(m+n)(p-q);(3) (2a+b)(2a-3b)-3a(2a+b)(4) x(x+y)(x-y)-x(x+y)2;5、把下列各式分解因式:(1) (a+b)(a-b)-(b+a);(2) a(x-a)+b(a-x)-c(x-a);(3) 10a(x-y)2 - 5b(y-x);(4) 3(x-1)3y-(1-x)3z b组题:1、把下列各式分解因式:(1) 6(p+q)2-2(p+q)(2) 2(x-y)2-x(x-y) 2x(x+y)2-(x+y)32、先因式分解,再求值(1) x(a-x)(a-y)-y(x-a)(y-a),其中a=3,x=2,y=4;(2) -ab(a-b)2+a(b-a)2-ac(a-b)2, 其中a=3,b=2,c=1因式分解的意义及其与整式乘法的区别和联系完成“议一议”由学生自己先做(或互相讨论),然后回答, 学生回
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供应室机器培训课件
- 涂装工艺培训课件
- 和田玉培训课件
- 再生水综合利用项目可行性研究报告
- 认识时针分针课件
- 剖宫产术试题及答案
- 2025年冷链物流出口货物质量保障合作协议
- 2025年度户外风光摄影创作合同范本
- 2025年度定制式防盗门制作及安装服务合同
- 2025版镍氢电池产品销售与全球市场拓展合同
- 2025年事业单位卫生类专业知识试卷(卫生监督与卫生法规)试题
- 难治性精神分裂症中国专家共识(2025)解读
- 节假日值班人员安排管理制度
- 2024年化工行业典型生产安全事故警示
- (正式版)DB44∕T 2683-2025 《老年肌少症中西医结合健康管理规范》
- 2025年农电招聘面试题目及答案
- 领导小组管理办法
- 01 华为采购管理架构(20P)
- 基孔肯雅热的个案护理
- GA/T 2167-2024移民管理机构对外窗口设置规范
- 拥抱大赛活动方案
评论
0/150
提交评论