


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
相交线教案教学目标1.在具体情境中了解对顶角,能找出图形中的一个角的对顶角,理解对顶角相等.2.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线.3.掌握点到直线的距离的概念,并会度量点到直线的距离.4.掌握垂线的性质,并会利用所学知识进行简单的推理. 教学重点与难点重点:邻补角与对顶角的概念.对顶角性质与应用.垂线的定义及性质.难点:理解对顶角相等的性质的探索.垂线的画法.教学设计一.创设情境 激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角.出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?二探索对顶角性质1画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?有公共的顶点O,而且的两边分别是两边的反向延长线.2用量角器分别量一量各角的度数,发现各类角的度数有什么关系?得出结论:对顶的两个角相等.3根据观察和度量完成下表:两条直线相交所形成的角分类位置关系数量关系提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?4概括形成对顶角概念和对顶角的性质三初步应用练习:1、下列说法对不对?对顶角相等,相等的两个角是对顶角2、利用对顶角相等的性质解释剪刀剪布过程中所看到的现象四巩固运用例题:如图,直线a,b相交,求2,3,4的度数.巩固练习已知,如图,求:的度数引言:前面我们学习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题.(一) 垂线的定义:当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图,直线AB、CD互相垂直,记作,垂足为O.请同学举出日常生活中,两条直线互相垂直的实例.注意:1.如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直.2、掌握如下的推理过程:(如上图) 反之, (二)垂线的画法探究:1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?2、经过直线l上一点A画l的垂线,这样的垂线能画出几条?3、经过直线l外一点B画l的垂线,这样的垂线能画出几条?画法:让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线.注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上.(三)垂线的性质:经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:性质1:过一点有且只有一条直线与已知直线垂直.探究: 如图,连接直线l外一点P与直线l上各点O,A,B,C,其中(我们称PO为点P到直线l的垂线段).比较线段PO、PA、PB、PC的长短,这些线段中,哪一条最短?性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.(四)点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如上图,PO的长度叫做点 P到直线l的距离.例1 (1)AB与AC互相垂直;(2)AD与AC互相垂直;(3)点C到AB的垂线段是线段AB;(4)点A到BC的距离是线段AD;(5)线段AB的长度是点B到AC的距离;(6)线段AB是点B到AC的距离.其中正确的有( )A. 1个 B. 2个C. 3个 D. 4个例2 如图,一辆汽车在直线形公路AB上由A向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025昆明市盘龙区汇承中学招聘教师(12人)考前自测高频考点模拟试题及答案详解(网校专用)
- 2025德曼节能科技(山东)有限公司招聘10人考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025湖南师范大学科创港校区规划建设指挥部劳务派遣人员招聘5人考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025广西河池市巴马瑶族自治县消防救援大队招录3人模拟试卷有答案详解
- 2025合肥市口腔医院招聘工作人员81人考前自测高频考点模拟试题附答案详解
- 2025年西北(西安)电能成套设备有限公司招聘(4人)模拟试卷及参考答案详解
- 2025贵州民族大学参加第十三届贵州人才博览会引才60人考前自测高频考点模拟试题(含答案详解)
- 2025河南郑州高新区双桥社区卫生服务中心招聘3人模拟试卷及答案详解一套
- 河北省【中职专业高考】2025年中职高考对口升学(理论考试)真题卷【轻工纺织大类】模拟练习
- 食品加工生产合同书5篇
- 高压氧的健康宣教
- 2025至2030中国硅单晶生长炉行业项目调研及市场前景预测评估报告
- 子宫肌瘤麻醉管理
- 成人床旁心电监护护理规程
- 食用菌种植项目可行性研究报告立项申请报告范文
- 2025版技术服务合同协议
- 焦炉机械伤害事故及其预防
- GB 5768.1-2025道路交通标志和标线第1部分:总则
- 江西红色文化考试试题及答案
- 苏州市施工图无障碍设计专篇参考样式(试行)2025
- 哮喘的诊疗和规范化治疗
评论
0/150
提交评论