




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
电机与拖动文献综述学生姓名 学 号 院 系 专 业 完成日期 目录前言2电动机发展史3常用电机的种类及特性5电机的应用7我国电机发展趋势及展望13总结16参考文献18前言电机是一种能实现机电能量转换的电磁装置,是变压器、电动机和发电机的统称。不同类的电机有不同的特性,随着科学技术的不断更新发展,电机技术的改进也在日新月异。同时,电机是一门很实用的课程,配合电机实验,能让学生透彻的了解电机的特性,同时培养学生掌握对电机的实验方法和操作技能。在现代工业企业中,利用电动机把电能转换成机械能,去拖动各种类型的生产机械按人们所给定的规律运动(即电力拖动),比其他拖动方式有无可比拟的优点。电力拖动具有良好的调速性能,起动、制动、反转和调速的控制简单方便、快速性好且效率高。电动机的类型很多,具有各种不同的运行特性,可以满足各种类型生产机械的要求。电力拖动系各参数的检测、信号的变换与传送方便,易于实现自动控制。因此,电力拖动成为现代工业电气自动化的基础。电动机发展史1820年7月21日,丹麦哥本哈根大学教授、物理学家奥斯特发现了“电流的磁效应”,建立了电磁的相互联系,诞生了电磁学。1821年英国著名的物理学家法拉第制成了第一个实验电动机的模型,经过40多年时间的研究与发展,终于使电动机得以在工业生产和日常生活中得以广泛应用。在这里我先谈一谈英国物理学家法拉第的一些研究工作。 1831年法拉第经过十余年时间的实验研究终于在8月29日实现了“磁生电”的梦想,发现了电磁感应定律。此外法拉第还发现了电解定律,还对气体放电现象进行了大量的卓有成效的研究,为后来伦琴射线、天然放射性、同位素等的发现准备了条件,为现代物理学的发展奠定了基础。他制造了第一台实验性电动机,发电机、第一台变压器。电动机简称电机,其在生产和生活中应用最广,小到电动玩具,大到火车,从工厂到农村、从事业单位到企业单位等等。在实际生产生活的应用中的电动机有直流电动机和交流电动机,我分别来谈一谈直流电动机和交流电动机研究发展情况。一、直流电动机。在电动机的发展中首先发展的是直流电动机,因为我们最先得到和推广的是直流电。直流电动机的发展大致可以分为四个阶段。1、是以永磁体作为磁场的阶段,这是最初直流电动机的共同特点。但是,由于天然磁极比较小,而且其磁性比较弱,电机只能获得很小的功率,获得的动力也是比较小,不过这段时间持续并不长,很快直流电机的发展就进入了第二个阶段。2、以电磁铁作为磁极的阶段。1825年英国的电工家斯特金制成了第一块电磁铁(用16个线圈导线绕制成的),1829年美国物理学家亨利所制成的电磁铁可以举起1吨的货物。1834年雅克比首先在电机中采用电磁铁代替永久磁铁,使其输出功率显著提高,并且首次采用换向装置,大大改变了直流电机的性能。3、第三阶段是改变励磁方式的阶段。励磁技术是直流发电机的一个关键性技术,因为电动机的使用必须要由直流发电机提供电流方可,解决了发电机的技术问题,就可以使电机的应用进入到一个新的阶段。1851年金斯捷首先运用电磁铁代替永久磁体励磁,最初供应电磁铁的电流都是来自他激式的伽伐尼电池,因为不管怎样发电机要发出电流必须先有励磁,而且必须先有电流才能产生磁场励磁。1854年丹麦的赫尔特.维尔纳兄弟就申请了自激式发电机的专利。此后又科学家们又发明了串激式自激发电机和自并励发电机,大大改变了直流发电机的性能,从而开创了直流电机发展的新阶段。4、直流电机发展的第四阶段就是在实用的道路上朝着完善化的方向前进,主要体现在电枢转子的改进上。1865年发明了齿状电枢;1870年发明了环状电枢;1872年发明了一种鼓型转子,降低了电机生产技术的成本,电机得到实际应用的时代终于来到了。但是,随着直流发电技术特别是直流输电技术的限制,交流电动机又开始受到了工程师们的重视了。 二、交流电动机。随着直流发电技术的发展,直流发电机最多可以发出的最大电压达到57.6千伏,输出最大功率可以达到4650千瓦,输送的距离可以达到180公里。但是这很快就达到了技术上的极限,直流发电机和输电技术存在这如下几个问题:(1)线圈的绝缘性能不够;(2)换向器无法工作;(3)发电机在制作、运行上存在困难,尤其是换向火花;(4)高压直接输给用户不仅危险,而且用户需要的是低电压。(5)直流电的输送存在很大的困难。因此1856年德国西门子公司生产出第一台转枢式交流电动机,用的是单相交流电,与直流电机相比优势并不明显。1885年意大利物理学家、电工学家加利莱奥.费拉里斯、1886年美国物理学家尼古拉.特斯拉各自独立的发明了旋转磁场,他们将几个线圈以辐射状排成一圈,接入交流电,使各个线圈中的交流电频率相同,但是其电压、电流有相移,这样在线圈之间的空间形成了一个旋转磁场,而这个磁场会带动通电线圈转动,这样他们研制成功二相交流电动机。1889年俄国工程师杜列夫-杜波洛沃尔斯基发明了鼠笼式三相电动机,这是第一台能够实用的三相交流电动机,至此电动机发展到了可以进入工业应用的阶段。从电动机的发展简史中我们可以看到科学要转化为技术,转化为生产力,并不是那么轻而易举、一蹴而就的,需要付出时间、付出人力、物力和财力。 三相交流发电机与鼠笼式三相交流电动机的发明给各个工厂、企业和公司提供了操控方便、快捷、安全、经济、源源不断、动力蓬勃的心动力,从而导致了第二次动力革命。这次革命促进了资本主义社会生产力的极大的发展,使资本主义大生产开始向自动化、电机化方向发展,出现了比以蒸汽机技术为代表的第一次动力革命更为深刻的一次工业技术革命,而且这次革命现在还在并且将来还将对于人类做出更大的贡献。常用电机的种类及特性在家用电器设备中,常配有小型单相交流感应电动机。交流感应电动机因应用类别的差异,一般可分为分相式电动机、电容启动式电动机、永久分相式电容电动机、罩极式电动机、永磁直流电动机及交直流电动机等类型。一般的三相交流感应电动机在接通三相交流电后,电机定子绕组通过交变电流后产生旋转磁场并感应转子,从而使转子产生电动势,并相互作用而形成转矩,使转子转动。但单相交流感应电动机,只能产生极性和强度交替变化的磁场,不能产生旋转磁场,因此单相交流电动机必须另外设计使它产生旋转磁场,转子才能转动,所以常见单相交流电机有分相启动式、罩极式、电容启动式等种类。1、分相启动式电动机分相式电动机广泛应用于电冰箱、洗衣机、空调等家用电器中。该电机有一个鼠笼式转子和主、副两个定子绕组。两个绕组相差一个很大的相位角,使副绕组中的电流和磁通达到最大值的时间比主绕组早一些,因而能产生一个环绕定子旋转的磁通。这个旋转磁通切割转子上的导体,使转子导体感应一个较大的电流,电流所产生的磁通与定子磁通相互作用,转子便产生启动转矩。当电机一旦启动,转速上升至额定转速时,离心开关脱开副绕组即断电,电机即可正常运转。 2、罩极式电动机罩极式单相交流电动机,它的结构简单,其电气性能略差于其他单相电机,但由于制作成本低,运行噪声较小,对电器设备干扰小,所以被广泛应用在电风扇、电吹风、吸尘器等小型家用电器中。罩极式电动机只有主绕组,没有副绕组(启动绕组),它在电机定子的两极处各设有一副短路环,也称为电极罩极圈。当电动机通电后,主磁极部分的磁场产生的脉动磁场感应短路而产生二次电流,从而使磁极上被罩部分的磁场,比未罩住部分的磁场滞后些,因而磁极构成旋转磁场,电动机转子便旋转启动工作。罩极式单相电动机还有一个特点,即可以很方便地转换成二极或四极转速,以适应不同转速电器配套使用。3、电容式启动电动机该类电动机可分为电容分相启动电机和永久分相电容电机。这种电机结构简单、启动快速、转速稳定,被广泛应用在电风扇、排风扇、抽油烟机等家用电器中。电容分相式电动机在定子绕组上设有主绕组和副绕组(启动绕组),并在启动绕组中串联大容量启动电容器,使通电后主、副绕组的电相角成,从而能产生较大的启动转矩,使转子启动运转。对于永久分相电容电动机来说,其串接的电容器,当电机在通电启动或者正常运行时,均与启动绕组串接。由于永久分相电机其启动的转矩较小,因此很适于排风机、抽风机等要求启动力矩低的电器设备中应用。电容式启动电动机,由于其运行绕组分正、反相绕制设定,所以只要切换运行绕组和启动绕组的串接方向,即可方便实现电机逆、顺方向运转。4、交、直流两用电动机一般常用单相交流电动机,在交流电源中运行时,电动机转速较高的也只能达每分钟转。而交直流两用电动机在交流或直流供电下,其电机转速可高达转,同时其电机的输出启动力矩也大,所以尽管电机体积小,但由于转速高输出功率大,因此交直流两用电动机在洗衣机、吸尘器、排风扇等家用电器中得以应用。交、直流两用电动机的内在结构与单纯直流电机无大差异,均由电机电刷经换向器将电流输入电枢绕组,其磁场绕组与电枢绕组构成串联形式。为了充分减少转子高速运行时电刷与换向器间产生的电火花干扰,而将电机的磁场线圈制成左右两只,分别串联在电枢两侧。两用电机的转向切换很方便,只要切换开关将磁场线圈反接,即能实现电机转子的逆转或顺转。在家用电器电机类中还有一种直流微型电动机。该电机在录音机、随身听、录像机、打印机、传真机等家用电器中广泛应用。直流微型电机由于定子绕组和转子绕组之间的串接形式不同,又可分为并激、串激、复激等几种类别。应用在家用电器中的电机,其定子绕组的转子,绕组之间的串接一般采用并激形式,即电机的定子磁场线圈与电枢绕组线圈并联后接到电源上。当通电后电机可保持磁场恒定,并利用电枢电路控制电机转速。这种直流电机的最大特点是当负载产生波动变化时,电机的转速保持定速状态。此外,在直流电动机中还有一种结构更为简单、用在玩具上的电机,这种电机是用永久磁铁作固定磁场的电动机,在电子玩具、电动剃须刀、微型按摩器等日用小电器中得以广泛应用。电机的应用从广义上讲,电机是电能的变换装置,包括旋转电机和静止电机。旋转电机是根据电磁感应原理实现电能与机械能之间相互转换的一种能量转换装置;静止电机是根据电磁感应定律和磁势平衡原理实现电压变化的一种电磁装置,也称其为变压器。这里我们主要讨论旋转电机,旋转电机的种类很多,在现代工业领域中应用极其广泛,可以说,有电能应用的场合都会有旋转电机的身影。与内燃机和蒸汽机相比,旋转电机的运行效率要高的多;并且电能比其它能源传输更方便、费用更廉价,此外电能还具有清洁无污、容易控制等特点,所以在实际生活中和工程实践中,旋转电机的应用日益广泛。不同的电机有不同的应用场合,随着电机制造技术的不断发展和对电机工作原理研究的不断深入,目前还出现了许多新型的电机,例如,美国EAD公司研制的无槽无刷直流电动机,日本SERVO公司研制的小功率混合式步进电机,我国自行研制适用于工业机床和电动自行车上的大力矩低转速电机等。1、旋转电机分类在旋转电机中,由于发电机是电能的生产机器,所以和电动机相比,它的种类要少的多;而电动机是工业中的应用机器,所以和发电机相比,人们对电动机的研究要多的多,对其分类也要详细的多。实际上,我们通常所说的旋转电机都是狭义的,也就是电动机俗称“马达”。众所周知,电动机是传动以及控制系统中的重要组成部分,随着现代科学技术的发展,电动机在实际应用中的重点已经开始从过去简单的传动向复杂的控制转移;尤其是对电动机的速度、位置、转矩的精确控制。由此可见,对于一个电气工程技术人员来说,熟悉各种电机的类型及其性能是很重要的一件事情。通常人们根据旋转电机的用途进行基本分类。下面我们就从控制电动机开始,逐步介绍电机中最有代表性、最常用、最基本的电动机控制电动机和功率电动机以及信号电机。2、控制电动机2.1 伺服电动机伺服电动机广泛应用于各种控制系统中,能将输入的电压信号转换为电机轴上的机械输出量,拖动被控制元件,从而达到控制目的。伺服电动机有直流和交流之分;最早的伺服电动机是一般的直流电动机,在控制精度不高的情况下,才采用一般的直流电机做伺服电动机。目前的直流伺服电动机从结构上讲,就是小功率的直流电动机,其励磁多采用电枢控制和磁场控制,但通常采用电枢控制。旋转电机的分类,直流伺服电动机在机械特性上能够很好的满足控制系统的要求,但是由于换向器的存在,存在许多的不足:换向器与电刷之间易产生火花,干扰驱动器工作,不能应用在有可燃气体的场合;电刷和换向器存在摩擦,会产生较大的死区;结构复杂,维护比较困难。交流伺服电动机本质上是一种两相异步电动机,其控制方法主要有三种:幅值控制、相位控制和幅相控制。一般地,伺服电动机要求电动机的转速要受所加电压信号的控制;转速能够随着所加电压信号的变化而连续变化;电动机的反映要快、体积要小、控制功率要小。伺服电动机主要应用在各种运动控制系统中,尤其是随动系统。2.2 步进电动机所谓步进电动机就是一种将电脉冲转化为角位移的执行机构;更通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度。我们可以通过控制脉冲的个数来控制电机的角位移量,从而达到精确定位的目的;同时还可以通过控制脉冲频率来控制电动机转动的速度和加速度,从而达到调速的目的。目前,比较常用的步进电动机包括反应式步进电动机(VR)、永磁式步进电动机(PM)、混合式步进电动机(HB)和单相式步进电动机等。步进电动机和普通电动机的区别主要就在于其脉冲驱动的形式,正是这个特点,步进电动机可以和现代的数字控制技术相结合。但步进电动机在控制精度、速度变化范围、低速性能方面都不如传统闭环控制的直流伺服电动机;所以主要应用在精度要求不是特别高的场合。由于步进电动机具有结构简单、可靠性高和成本低的特点,所以步进电动机广泛应用在生产实践的各个领域;尤其是在数控机床制造领域,由于步进电动机不需要A/D转换,能够直接将数字脉冲信号转化成为角位移,所以一直被认为是最理想的数控机床执行元件。除了在数控机床上的应用,步进电机也可以用在其他的机械上,比如作为自动送料机中的马达,作为通用的软盘驱动器的马达,也可以应用在打印机和绘图仪中。此外,步进电动机也存在许多缺陷;由于步进电机存在空载启动频率,所以步进电机可以低速正常运转,但若高于一定速度时就无法启动,并伴有尖锐的啸叫声;不同厂家的细分驱动器精度可能差别很大,细分数越大精度越难控制;并且,步进电机低速转动时有较大的振动和噪声。2.3 力矩电动机所谓的力矩电动机是一种扁平型多极永磁直流电动机。其电枢有较多的槽数、换向片数和串联导体数,以降低转矩脉动和转速脉动。力矩电动机有直流力矩电动机和交流力矩电动机两种。其中,直流力矩电动机的自感电抗很小,所以响应性很好;其输出力矩与输入电流成正比,与转子的速度和位置无关;它可以在接近堵转状态下直接和负载连接低速运行而不用齿轮减速,所以在负载的轴上能产生很高的力矩对惯性比,并能消除由于使用减速齿轮而产生的系统误差。交流力矩电动机又可以分为同步和异步两种,目前常用的是鼠笼型异步力矩电动机,它具有低转速和大力矩的特点。一般地,在纺织工业中经常使用交流力矩电动机,其工作原理和结构和单相异步电动机的相同,但是由于鼠笼型转子的电阻较大,所以其机械特性较软。2.4 开关磁阻电动机 开关磁阻电动机是一种新型调速电动机,结构极其简单且坚固,成本低,调速性能优异,是传统控制电动机强有力竞争者,具有强大的市场潜力。2.5 无刷直流电动机无刷直流电机(BLDCM)是在有刷直流电动机的基础上发展来的,但它的驱动电流是不折不扣的交流;无刷直流电机又可以分为无刷速率电机和无刷力矩电机。一般地,无刷电机的驱动电流有两种,一种是梯形波(一般是“方波”),另一种是正弦波。有时候把前一种叫直流无刷电机,后一种叫交流伺服电机,确切地讲是交流伺服电动机的一种。无刷直流电机为了减少转动惯量,通常采用“细长”的结构。无刷直流电机在重量和体积上要比有刷直流电机小的多,相应的转动惯量可以减少40%50%左右。由于永磁材料的加工问题,致使无刷直流电机一般的容量都在100kW以下。这种电动机的机械特性和调节特性的线性度好,调速范围广,寿命长,维护方便噪声小,不存在因电刷而引起的一系列问题,所以这种电动机在控制系统中有很大的应用潜力。3、功率电动机3.1 直流电动机直流电动机是出现最早的电动机,大约在19世纪末,其大致可分为有换向器和无换向器两大类。直流电动机有较好的控制特性直流电动机在结构、价格、维护方面都不如交流电动机,但是由于交流电动机的调速控制问题一直未得到很好的解决方案,而直流电动机具有调速性能好、起动容易、能够载重起动等优点,所以目前直流电动机的应用仍然很广泛,尤其在可控硅直流电源出现以后。3.2 异步电动机异步电动机是基于气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩而实现能量转换的一种交流电机。异步电动机一般为系列产品,品种规格繁多,其在所有的电动机中应用最为广泛,需量最大;目前,在电力传动中大约有90%的机械使用交流异步电动机,所以,其用电量约占总电力负荷的一半以上。异步电动机具有结构简单,制造、使用和维护方便,运行可靠以及质量较小,成本较低等优点。并且,异步电机有较高的运行效率和较好的工作特性,从空载到满载范围内接近恒速运行,能满足大多数工农业生产机械的传动要求。异步电动机主要广泛应用于驱动机床、水泵、鼓风机、压缩机、起重卷扬设备、矿山机械、轻工机械、农副产品加工机械等大多数工农生产机械以及家用电器和医疗器械等。在异步电动机中较为常见的是单相异步电动机和三相异步电动机,其中三相异步电动机是异步电动机的主体。而单相异步电动机一般用于三相电源不方便的地方,大部分是微型和小容量的电机,在家用电器中应用比较多,例如电扇、电冰箱、空调、吸尘器等。3.3 同步电动机所谓同步电动机就是在交流电的驱动下,转子与定子的旋转磁场同步运行的电动机。同步电动机的定子和异步电动机的完全一样;但其转子有“凸极式”和“隐极式”两种。凸极式转子的同步电动机结构简单、制造方便,但是机械强度较低,适用于低速运行场合;隐极式同步电动机制造工艺复杂,但机械强度高,适用于高速运行场合。同步电动机的工作特性与所有的电动机一样, 同步电动机也具有“可逆行”,即它能按发电机方式运行,也可以按电动机方式运行。同步电动机主要用于大型机械,如鼓风机、水泵、球磨机、压缩机、轧钢机以及小型、微型仪器设备或者充当控制元件;其中三相同步电动机是其主体。此外,还可以当调相机使用,向电网输送电感性或者电容性无功功率。4、信号电机4.1 位置信号电机目前,最有代表性的位置信号电机:旋转变压器、感应同步器和自整角机。旋转变压器本质上是可以随意改变一次绕组和二次绕组耦合程度的变压器。其结构和绕线式异步电动机相同,定子和转子各有两组相互垂直的分布绕组,转子绕组利用滑环和电刷与外电路联接。当一次绕组励磁以后,二次绕组的输出电压和转子的转角成正弦、余弦、线性或者其他函数关系,可以用于计算装置中的坐标变换和三角运算,还可以在控制系统中作为角度数据传输和移相器使用。感应同步器是一种高精度的位置或角度检测元件,有圆盘式和直线式两种。圆盘式感应同步器用来测量转角位置;而直线式感应同步器用来测量线位移。自整角机是一种感应式机电元件,被广泛地应用于随动系统中,作为角度传输、变换和指示的装置。在控制系统中经常两台或者多台联合使用,使机械上互不相连的两根或多根轴能够自动地保持相同的转角变化,或者同步旋转。4.2 速度信号电机最有代表性的速度信号电机是测速发电机,其实质上是一种将转速变换为电信号的机电磁元件,其输出电压与转速成正比。从工作原理上讲,它属于“发电机”的范畴。测速发电机在控制系统中主要作为阻尼元件、微分元件、积分元件和测速元件来使用。测速发电机有直流和交流之分;而直流测速发电机又有他励和永磁之分,其结构和工作原理与小功率直流发电机相同,通常输出功率较小,作为计算元件时要求其输出电压的线性误差和温度误差低于一个上限。而交流测速发电机又有同步和异步之分;同步测速发电机包括:永磁式、感应式和脉冲式;异步测速发电机应用最广泛的是杯型转子异步测速发电机。为了提高测速发电机的精确度和可靠性,目前,直流测速发电机出现了无刷结构的霍尔效应直流测速发电机。因为这种霍尔效应无刷直流测速发电机是一种无齿槽、无绕组的电机,所以它不会产生由于齿槽而存在的“齿槽谐波电势”,这种电机结构简单,便于小型化。5、结论一般地,在一个完整的自动控制系统中,信号电机、功率电动机和控制电动机都会有自己的用武之地。通常控制电动机是很“精确”的电动机,在控制系统中充当“核心执行装置”;而功率电动机是比较“强壮”的大功率电动机,常用来拖动现场的机器设备;信号电机则在控制系统中担任“通讯员”的角色,本质上就是“电机传感器”。当然,并不是所有的自动控制系统中都具备这三种电机,在一般的自动化领域,例如运动控制和过程控制,尤其是在运动控制中,控制电动机是必不可少的“核心器件”,所以控制电动机在自动化领域中的地位是举足轻重的,这也是人们对控制电动机研究最多的原因之一。实际上,随着电机制造技术的不断发展和相互融合,各种旋转电机的性能都逐渐“交叉化”和“特殊化”。对各种旋转电机进行极其详细地分类是不可能的,因为许多新型旋转电机都是许多电机工作原理和许多电机制造技术高度统一的有机体。因此,对于非电机专业的一般电气工程技术人员来讲,能够从整体结构上把握各种旋转电机的特性和用途就可以了。我国电机发展趋势及展望目前与国外高端产品比拟,可靠性低已成为国产数控系统的最大软肋。而这种低可靠性与我国电子工业还相对落后不无关系。“因为我国电子基础工业发展与国外有较大的差距,因此我国数控系统的可靠性与国外比拟有较大的差距。如国外高档数控系统的可靠性指标均匀达到2000小时无端障的水平,而我国数控系统的这一指标仅仅达到500小时,这就造成了机床用户单位对国产系统的不信任。”中投参谋电机行业分析师也表示,新一代的电机数控系统将采用更高集成度的电路芯片,利用大规模或超大规模的专用及混合式集成电路,减少元器件的数目,从而进步可靠性。很显著,振兴电子配套工业将成为我国电机业的突破口。 另外,产品的成套性、系列化程度不够,也是国产数控系统整体质量和机能难以进一步进步的主要原因。据了解,像西门子、发那科等提高前辈企业均出产成套的数控系统设备,并具有一定的排他性。目前电机数控系统的发展趋势是高速、高精、多通道控制、双轴同步控制等,以及现场总线技术规范和尺度的研究制定。1、电动多回转式执行机构 电力驱动的多回转式执行机构是最常用、最可靠的执行机构类型之一。使用单相或三相电念头驱动齿轮或蜗轮蜗杆最后驱动阀杆螺母,阀杆螺母使阀杆产生运动使阀门打开或封闭。多回转式电动执行机构可以快速驱动大尺寸阀门。为了保护阀门不受损坏,安装在在电机行程的终点的限位开关会堵截电机电源,同时当安全力矩被超过期,力矩感应装置也会堵截电机电源,位置开关用于指示阀门的开关状态,安装离合器装置的手轮机构可在电源故障时手动操纵阀门。 这种类型执行机构的主要长处是所有部件都安装在一个壳体内,在这个防水、防尘、防爆的外壳内集成了所有基本及提高前辈的功能。主要缺点是,当电源故障时,阀门只能保持在原位,只有使用备用电源系统,阀门才能实现故障安全位置(故障开或故障关) 2、电动单回转式执行机构 这种执行机构类似于电动多回转执行机构,主要差别是执行机构终极输出的是1/4转记90度的运动。新一代电动单回转式执行机构结合了大部门多回转执行机构的复杂功能,例如:使用非进入式用户友好的操纵界面实现参数设定与诊断功能。 单回转执行机构结构紧凑可以安装到小尺寸阀门上,通常输出力矩可达800公斤米,另外应为所需电源较小,它们可以安装电池来实现故障安全操纵。 3、流体驱动多回转式或直线输出执行机构 这种类型执行机构常常用于操纵纵贯阀(截止阀)和闸阀,它们使用气动或液动操纵方式。结构简朴,工作可靠,很轻易实现故障安全操纵模式。 通常情况下人们使用电动多回转执行机构来驱动闸阀和截止阀,只有在无电源时才考虑使用液动或气动执行机构。 4、流体驱动单回转式执行机构 气动、液动单回转执行机构非常通用,它们不需要电源并且结构简朴,机能可靠。它们应用的领域非常广泛。通常输出从几公斤米到几万公斤米。它们使用气缸及传动装置将直线运动转换为直角输出,传动装置通常有:拨叉、齿轮齿条,杠杆。齿轮齿条在全行程范围内输出相同力矩,它们非常合用于小尺寸阀门,拨叉具有较高效率在行程出发点具有高力矩输出非常适合于大口径阀门。气动执行机构一般安装电磁阀、定位器或位置开关等附件来实现对阀门的控制和监测。 这种类型执行机构很轻易实现故障安全操纵模式。同时,高档数控系统所急需的全数字化伺服驱动、电主轴、直线电机、力矩电机等功能部件的系列化、成套化也是重要的发展方向。国产数控系统若要抢占高端市场,势必要抓紧时间强下苦功,抢占下一轮技术先机。 电机业的振兴除了使产品本身使用的信息技术不断深入外,电机制造企业的信息化建设也至关重要。目前我国电机企业数字化设计水平相对较高。不外,就整个行业而言,三维CAD/CAM应用水平近几年有较大进步,但结构优化计算和仿真设计等应用很少。 不外,与设计信息化比拟,治理信息化水平相对更加落后。例如ERP、SCM(供给链治理)、CRM(客户关系治理)等应用还不成熟,与电子行业、汽车行业比拟还存在很大差距。“目前,完整实施ERP的企业还不是良多。固然财务治理、库存治理等实施得还比较成熟,但出产计划治理、本钱治理还是弱项,特别是出产治理、车间功课计划治理与财务治理集成度不高。”! 此外,出产装配自动化程度低也是不争的事实。当然,机床行业本身的特征亦决定了其信息化建设与其他行业比拟难度更大。 电机业是典型的“加工装配”型离散制造行业,其产品结构与制造工艺比较复杂,制造过程所需机器设备和工装夹具种类繁多,再加上出产技术类型多样化(既包括订单型出产、库存型出产,又包括订单装配型出产和订单工程型出产),从而导致机床行业信息化建设很复杂。 和数控系统类似,在上述的各个环节信息化建设中,依旧是国外产品拔得头筹。例如,在三维设计软件领域,国外有些产品在机能和功能上相对更强,尽管三维CAD/CAM软件已突破国产化,但是产品技术在参数化程度、柔性设计方面还有待进步,一些复杂的曲面造型还很难达到,CAM-CNC一体化程度也有待进步。 另外,我国的治理软件在应对突发事件方面不及国外产品,软件开发设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论