


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
223独立重复实验与二项分布教学目标:知识与技能:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。过程与方法:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。教学重点:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题教学难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算授课类型:新授课课时安排:1课时教学过程:一、复习引入:1、相互独立事件同时发生的概率:一般地,如果事件相互独立,那么这个事件同时发生的概率,等于每个事件发生的概率的积, 二、讲解新课:1独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验2独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是,那么在次独立重复试验中这个事件恰好发生次的概率它是展开式的第项3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数是一个随机变量如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是,(k0,1,2,,n,)于是得到随机变量的概率分布如下:01knp由于恰好是二项展开式中的各项的值,所以称这样的随机变量服从二项分布(binomial distribution ),记作b(n,p),其中n,p为参数,并记b(k;n,p)三、讲解范例:例1某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率; (2)至少有 8 次击中目标的概率(结果保留两个有效数字) 解:设x为击中目标的次数,则xb (10, 0.8 ) . (1)在 10 次射击中,恰有 8 次击中目标的概率为 p (x = 8 ) .(2)在 10次射击中,至少有 8 次击中目标的概率为 p (x8) = p (x = 8) + p ( x = 9 ) + p ( x = 10 ) .例2(2000年高考题)某厂生产电子元件,其产品的次品率为5%现从一批产品中任意地连续取出2件,写出其中次品数的概率分布解:依题意,随机变量b(2,5%)所以,p(=0)=(95%)=0.9025,p(=1)=(5%)(95%)=0.095,p()=(5%)=0.0025因此,次品数的概率分布是012p0.90250.0950.0025例3重复抛掷一枚筛子5次得到点数为6的次数记为,求p(3)解:依题意,随机变量bp(=4)=,p(=5)=p(3)=p(=4)+p(=5)= 四、课堂练习: 1每次试验的成功率为,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( ) 210张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( ) 3某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是 ( ) 答案:1. c 2. d 3. a 五、小结 :1独立重复试验要从三方面考虑第一:每次试验是在同样条件下进行第二:各次试验中的事件是相互独立的第三,每次试验都只有两种结果,即事件要么发生,要么不发生2如果1次试验中某事件发生的概率是,那么次独立重复试验中这个事件恰好发生次的概率为对于此式可以这么理解:由于1次试验中事件要么发生,要么不发生,所以在次独立重复试验中恰好发生次,则在另外的次中没有发生,即发生,由,所以上面的公式恰为展开式中的第项,可见排列组合、二项式定理及概率间存在着密切的联系 六、布置作业:课本58页 练习1、2、3、4第60页 习题 2. 2 b组2、3七、板书设计(略) 八、教学反思:1. 理解n次独立重复试验的模型及二项分布,并能解答一些
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年乡镇公务员录用考试模拟试题及答案解析
- 文笔技能测试题及答案
- 2025年乡镇工会工作案例分析题集及解析
- 2025年人民银行面试模拟题答案详解行业热点分析
- 2025超市水果采购合同模板
- 2025年版个人抵押借款合同范本标准版
- 2025年烟花买卖合同
- 2025年合同使用审批登记表
- 2025全面版委托代理合同范本
- 2025年孟浩然简介题目及答案
- (2025秋新版)苏教版科学三年级上册全册教案
- 2025年人教版PEP英语三年级上册教学计划
- 2025年机动车检测站授权签字人试题库(含参考答案)
- 2025年高一上学期英语开学第一课课件
- 新老物业交接流程
- 全球视野下劳动报酬占GDP份额的比较与影响因素探究
- 【高中】【政治】2025【秋季】开学第一课:你好高中政治(课件)
- 【初二】【八年级】【英语】2025【秋】开学第一课【人教版】(课件)
- 2025年小儿惊厥的应急预案演练脚本
- 医院人文关怀培训课件
- 2024年秋季新人教版八年级上册物理全册教案
评论
0/150
提交评论