乘法分配律究竟难在哪里.doc_第1页
乘法分配律究竟难在哪里.doc_第2页
乘法分配律究竟难在哪里.doc_第3页
乘法分配律究竟难在哪里.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

乘法分配律究竟难在哪里乘法分配律是小学阶段非常重要的学习内容。由于它的变式很多,方法灵活,因此一直都是学生容易出错的内容。特别是到了六年级了,随着数域的扩展,出现小数,分数的乘法分配律时,学生仍然频频出错。到底乘法分配律难在哪里?如何突破难点?我们先来看几个错例?错例 1:凑整思想的僵化,造成生搬硬套。 99*17 46*98 分析:从这两个错题可以看出,学生片面关注99和98“接近整百数”的特点,没有考虑到整个算式的结构,没有准确分析“这个数”在算式中与其他数之间的运算关系,只是盲目进行凑整,必然造成计算过程前后不等价。错例2:算理理解不到位,造成丢三落四。 101分析:这种“漏项”的现象十分普遍。遇到“1乘公共因数”的情形时,学生没有自觉地把“1个几”或者“几个1”用乘法算式表示出来,造成计算过程中的疏漏。究其原因,还是对乘法的意义掌握得不扎实。错例3:乘法分配律 和乘法结合律的混淆,造成过程混乱。 32*25分析:这里明显出现了算理与算法的脱节。学生未能真正辨析和理解乘法结合律与乘法分配律在意义和形式上的区别,片面考虑凑整,造成运算定律的误用和运算过程的混乱。错例4重形式记忆轻算理理解,造成计算循环。 102分析:学生在做第一步时,思路是清晰的,把102看成(100+2),把88分解成(8+80),第二步就应用乘法分配律进行等价变形,本来是顺理成章的事情,但是在第三步时又“鬼使神差”地回到了原题上。说明学生仍然停留在运算定律形式上的套用,这显然是单纯注重形式记忆造成。实践反思:学生出现上述四种错误的根本原因在于不理解算式的意义,仅仅停留在题目结构层面上,也就是先找相同的因数,再套用字母公式,不能按照算理正确地思考简算过程。笔者认为,教师应从最朴素的算理一一乘法的意义出发,坚持“算理先行,理到法随”的教学原则,分析学生的痛处。抓住问题的本质,才能对症下药。1、 画图明理,帮助学生建立模型。画图能够非常直观地反映运算规律。学生在学习乘法的意义之初,能够通过横着看和竖着看说出图意并列出两个乘法算式。这些经历为进一步研究乘法分配律做好了知识和经验上的准备。因此,我们按照“看图想算式看算式画图看算式想象看算式说意义”的步骤帮助学生理解算理,构建乘法分配律的思维模型。第一步:看图想算式。出示:师:你能说说这幅图表示什么意思吗?要求一共是多少,你能想到几种算法?、生1:横着看,第一行表示12个19,第二行表示12个51,列式是19生2:竖着看,第一组表示19+51的和,一共有这样的12组,列式是师:同桌两人上各选一道算式,算出结果后对比,你发现了什么?生:两个算式相等,也就是师:12个19加51个19,就等于12个(19+51)的和一个简单的示意图,直观地再现了算式的意义。学生通过横着看,竖着看,自然地将这个等式与乘法的意义联系起来,还能从乘法意义的角度理解左右两边的算式为什么相等。经过几组这样的练习,学生看着图就能够得出乘法算式,并说出算式的意义,进一步在理解算理的基础上发现规律,避免从形式上机械记忆。第二步:看算式画图老师给出算式,学生根据自己的理解画出示意图。重点提问:横着看表示什么?竖着看表示什么?几个几加几个几等于几个几?这是第一步的逆向思维过程,目的是通过图式对应,进一步强化意义。第三步:看算式想象出示算示,如(15+25)*4,请学生闭上眼睛想一想,图是什么样的?还可以怎样算,为什么?借助想象,让乘法的意义铭刻于心,进一步巩固乘法分配律的算理。第四步:看算式说意义出示一组算式如下通过这样一组练习,让学生逐渐脱离画图,看到算式能够马上想到意义,进而顺利写出右边的算式,达到再次巩固算理的目的。第五步:总结 规律提问:你发现发什么规律?能用一个字母式子表示你发现的规律吗?通过师生互动,引导学生口述规律,并用符号表述规律,初步建立乘法分配律的模型。提问:你发现了什么规律?能用一个字母式子表示你发现的规律吗?通过师生互动,引导学生口述规律,并用符号表述规律,初步建立乘法分配规律的模型。2、 链接旧知,沟通知识之间的内要联系。三年级学习过两位数乘一位数,如12*3,口算时先算10*330,2*36,再算30+636;用竖式算时,求3个12是多少就是求3个10与3个2的和。四年级学过两位数乘两位数,,如24*12,即求24*12,即求12个24是多少,等于12个20与12个4的和,列式为(20+4)*1220*12+4*12.。进一步让学生思考:四年级学过的三位数乘两位数的竖式,是不是也符合这个规律呢?顺着前面的思路,学生很快得出:145*12就是求12个145是多少,等于2个145加上10个145,即145*12145*10+145*2.通过链接旧知,唤醒学生的已有经验,有效巩固了乘法分配律的算理和算法。3.分层练习,引导学生灵活运用定律。学生在练习第一组算式之后会得到这样的经验:相同的因数无论放在乘号前还是乘号后,只要符合几个几加上几个几的意义,就能够借助分配律进行等价转换。第二组算式都 是含有字母的形式,意在通过拓展应用,帮助学生进一步巩固乘法分配律的结构模型。(2)对比练习,积累经验。(1)乘法结合律与乘法分配律的对比。有时,乘法结合律和乘法分配律可以适用于同一题,只是拆法有所不同。简单地说,拆成两数之积就是结合律,拆成两数之和就是分配律。对比相似题,选择合适的计算方法。通过这一题组的对比,让学生明白,具体问题要具体分析,有些题目按照运算顺序直接计算就已经很简单了,有些题目则需要使用运算定律才能使计算简便。同题对比,优化简算的方法。第一组:第二组:学生在进行简算时往往存在思维水平上的参差不齐,这是一个普遍现象。教师要善于通过不同解法的对比,促进学生自觉优化方法,逐步提高简算水平。(3)提高练习,拓展延伸。第1题是由两个因数拓展到三个因数。第2题可以有不同的解题思路:即可以把48拆成(40+8),直接运用乘法分配简算;又可以把48拆成6*8或者4*12,用乘法交换律和结合律来简算。第三题有一定的难度,看上去没有明显的符合规律的结构,但是如果把26拆成13*2,问题就迎刃而解了。总体来说,第一层是最基本的结构训练,所先题目都与运算定律完全一致,目的是让学生熟练掌握定律。第二层是简单变式,通过对比练习,让学生明确乘法结合律与分配律的异同,学会根据数据特点选择并优化计算方法。第三层是拓展提高,这类题目需要经过两次或两次以上的变形,才能转化成基本题。无论题目怎样变化,只要学生按照乘法的意义去思考,就一定能找到解决问题的突破口中。3、 潜移默化,培养学生的数学素养。在研究了乘法对于加法的分配律之后,教师可启发学生进一步思考:除了乘法对于加法的分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论