28章 圆 教案.doc_第1页
28章 圆 教案.doc_第2页
28章 圆 教案.doc_第3页
28章 圆 教案.doc_第4页
28章 圆 教案.doc_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教案学案专用稿课题: 28.1.1 圆的基本元素(第 课时)主备人:黄兴前 第个教案 总第个教案教学任务分析教学目标知识技能1、本节课使学生理解弦、弧、弓形、同心圆、等圆、等孤的概念教学思考2、初步会运用本节的概念判断真假命题解决问题3、逐步培养学生亲自动手实践,总结出新概念的能力情感态度重点理解圆的有关概念难点对“等圆”、“等弧”的定义中的“互相重合”这一特征的理解教具准备教参、练习册、课外资料教学过程设计教师活动设计学生活动设计一、新课引入:同学们,上节课我们学习了圆的定义、点和圆的位置关系教师提问学生回答上节课的知识点,学生之间互相补充、评价接着启发学生在练习本上画一个圆,要求学生在圆上任取两点A、B请同学们一边画图,一边观察,一边思考教师提出的问题这两点A、B之间的部分是什么?连结两点得到线段AB又是什么?AB把圆分成两部分得到图形又叫做什么?在学生想说又叫不准的情况下,教师出示板书本节专门研究圆的有关概念二、新课讲解:学生画图后观察出圆的一些概念,由学生回答出概念的名称和内容如果学生回答的很准确,教师不必重复在学生回答中,教师板书出重点概念1弦:连结圆上任意两点的线段叫做弦教师提问一名中下生,“一个圆有多少条弦?”找一名中等生回答“在这些弦中,最长的弦是什么?怎么定义这个最长的弦?”2直径:经过圆心的弦是直径直径与半径之间关系找一名中下学生回答3圆弧:圆上任意两点间的部分叫做圆弧简称弧教师讲清弧的符号“ ”的表示以A、B为端点的弧,记作 ,读作“圆弧AB”或“孤AB”这时教师引导学生观察圆中的圆弧有几种情况?通过学生观察、比较、归纳出三种圆弧,师生一起总结出这三种弧的定义半圆弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆弧优弧:大于半圆的弧叫优弧优弧CBA,记作“ ”是优弧劣弧:小于半圆的弧叫做劣弧这时幻灯打出一组练习题:练习1 判断下列语句是否正确?为什么?1半圆是弧2弧是半圆3两个劣弧之和等于半圆4两个劣弧之和等于圆周长这样做的目的使学生对圆弧的定义加以理解弓形:由弦及其所对的弧组成的图形叫做弓形了解到弓形定义,为了使学生更好地了解圆中一条弦能得到两个弓形,引导学生观察得到,这样对今后学习弦所对的圆周角的问题起奠基作用接下来讲同心圆、等圆、等弧的三个概念时,从字意义让学生探索出概念的内含外延培养学生通过理解字意感受到图形与概念的有机结合,是学习好几何的基本保障例如同心圆:即圆心相同,半径不相等的两个圆叫做同心圆等圆的讲解以投影演示,让学生观察、比较得出等圆是互相重合两个圆由等圆可以证明半径相等,直径相等反过来半径相等,直径相等两个圆是等圆同时告诉学生同圆或等圆的半径相等等弧:在同圆或等圆中,能够互相重合的弧叫做等弧等弧是本节的难点,教师从引导学生能“理解互相重合”入手,联系到如果互相重合说明同圆的半径相等,进一步证明满足同圆或等圆的前提条件这样分析的好处是让学生真正认识到等圆、等弧都是从“互相重合”得到的,进一步理解“等弧”的条件已经具备同圆或等圆,这样又消除对等弧不理解的心理障碍,从而顺理成章的让学生从认识到理解最后到准确应用接下来给学生一组练习题巩固已学过的知识学生回答,学生之间参与评价练习2 判断题:1直径是弦;2弦是直径;3半圆是弧,但弧不一定是半圆;4半径相等的两个半圆是等弧;5长度相等的两条弧是等弧;例2 如图在圆O中,AB、CD为直径求证:ADBC由学生分析,学生写出证明过程,学生纠正存在问题巩固练习:教材P66中2、3题(学生自己完成)三、课堂小结:本节小结引导学生自己做出总结:弦与直径,弧与半圆,同心圆、等圆指两个图形,等圆,等弧是互相重合得到,等弧的条件作用3新定义符号“ ”的表示方法板书设计:课后反思:课题: 28.1.2 圆周角(第 课时)主备人:黄兴前 第个教案 总第个教案教学任务分析教学目标知识技能通过本节的教学使学生理解圆周角的概念,掌握圆周角定理教学思考准确地运用圆周角定理进行简单的证明计算解决问题通过圆周角定理的证明使学生了解分情况证明数学命题的思想方法,从而提高学生分析问题、解决问题的能力情感态度继续培养学生观察、分析、想象、归纳和逻辑推理的能力重点圆周角的概念和圆周角定理难点认识圆周角定理需要分三种情况逐一证明的必要性教具准备教参、练习册、课外资料教学过程设计教师活动设计学生活动设计一、新课引入:同学们,上节课我们已经学习了圆心角的定义、圆心角的度数和它所对的弧的度数的相等关系学生在复习圆心角的定义基础上,老师通过直观演示将圆心角的顶点发生变化满足顶点在圆上,而角的两边都与圆相交,得到与圆有关的又一种角学生通过观察,对比着圆心角的定义,概括出圆周角的定义教师板书:“75圆周角(一)”通过圆心角到圆周角的运动变化,帮助学生完成从感性认识到理性认识的过渡一方面激发学生学习几何的兴趣,同时让学生感受到图形在学生眼中动起来二、新课讲解:为了进一步使学生真正理解圆周角的概念,教师利用电脑进一步演示得到三种不同状态的圆周角教师提问,学生回答,教师板书你能仿照圆心角的定义给圆周角下一个定义吗?圆周角定义:顶点在圆上,并且两边都和圆相交的角叫做圆周角这时教师向全体学生提出这样两个问题:顶点在圆上的角是圆周角?圆和角的两边都相交的角是圆周角?教师不做任何解释,指导学生画图并回答出答案对与否选择出有代表性的答案用幻灯放出来,师生共同批改这样做的好处是学生自己根据题意画出图形,加深了对概念的理解,师生共同批改,使学生抓住概念的本质特征,这时由学生归纳出圆周角的两个特征接下来给学生一组辨析题:练习1:判别图7-29中各圆形中的角是不是圆周角,并说明理由通过这组练习题,学生就能很快的深入理解圆周角的概念,准确的记忆圆周角的定义这时教师启发学生观察电脑演示的圆周角的三个图,说明圆心和圆周角的位置关系的三种情况 在圆周角定理的证明时,不是教师直接告诉学生的定理内容,而是让学生把自己课前准备好的圆拿出来,在圆上画一个圆周角,然后再画同弧所对的圆心角,由同桌两人用量角器量出这两个角的度数,请三名同学把量得数据告诉同学们,亲自试验发现它们之间的关系这时由学生总结出本节课的定理,然后教师把定理内容写在黑板上定理:一条弧所对的圆周角等于它所对的圆心角的一半这时教师提问一名中下生:“一条弧所对的圆周角有多少个?圆心角呢?”教师概括:虽然一条弧所对的圆周角有无数个,但它们与圆心的位置关系,归纳起来却只有三种情况下面我们就来证明这个定理的成立已知:O中, 所对的圆周角是BAC,圆心角是BOC分析:(1)如果圆心O在BAC的一边AB上,只要利用三角形内角和定理的推论和等腰三角形的性质即可证明如果圆心O不在BAC的一边AB上,我们如何证明这个结论成立呢?教师进一步分析:“能否把(2)、(3)转化为(1)圆心在角的一边上的特殊情况,那么只要作出直径AD,将BAC转化为上述情况的两角之和或差即可,从而使问题得以解决这样分析的目的,在几何定理的证明中,分情况逐一证明肯定命题的正确性,这还是第一次接触因而教师分析就应从教会学生解决问题的方法上入手,教会学生由圆心O的特殊位置的证明为基础,进而推到一般情况同时要向学生渗透证明过程体现了由已知到未知、由特殊到一般的思维规律本题的后两种情况,师生共同分析,证明过程由学生回答,教师板书:证明:分三种情况讨论(1)图中,圆心O在BAC的一边上(2)图中,圆心O在BAC的内部,作直径AD利用(1)的结果,有(3)图中,圆心O在BAC的外部,作直径AD,利用(1)的结果,有接下来为了巩固所学的圆周角定理,幻灯片上出示例1例1 如图7-30,OA,OB,OC都是O的半径,AOB=2BOC求证:ACB=2BAC例1由教师引导学生结合图形分析证明思路,证明过程请一名中等生上黑板完成,其它同学把证明写在练习本上这样处理例1的目的,是让学生通过自己的思维活动得到解题思路的探索过程,由学生自己完成证明,使学生切实从应用上加深对圆周角的理解为了坚持面向全体学生,遵循因材施教的原则,使不同层次的学生学有所得,教师有目的设计两组习题第一组练习题是直接巩固定理,难度较小,可提问较差的学生求圆中的角x的度数?第二组练习题是间接巩固定理,需要以圆心角的度数为过渡,可提问中等偏上的学生如图7-32,已知ABC内接于O, , 的度数分别为80和110,则ABC的三个内角度数分别是多少度?教学小结:这节课主要学习了两个知识点:1圆周角定义2圆周角定理及其定理应用方法上主要学习了圆周角定理的证明渗透了“特殊到一般”的思想方法和分类讨论的思想板书设计:课后反思:课题: 28.2 .1点与圆的关系(第 课时)主备人:黄兴前 第个教案 总第个教案教学任务分析教学目标知识技能本节课使学生了解“不在同一条直线上三点确定一个圆”的定理及掌握它的作图方法教学思考了解三角形的外接圆,三角形的外心,圆的内接三角形的概念解决问题培养学生观察、分析、概括的能力;情感态度重点经过不在一条直线上三点确定圆的定理难点理解“不在一条直线上”确定圆的条件教具准备教参、练习册、课外资料教学过程设计教师活动设计学生活动设计一、新课引入:某一个城市在一块空地上新建了三个居民小区,它们分别为A、B、C,且三个小区不在同一直线上要想规划一所中学,使这所中学到三个小区的距离相等请问同学们这所中学建在哪一个位置?你怎么确定这个位置呢?教师提出问题,学生思考回答接着教师进一步提出这样一个问题,初一我们学习了直线公理,直线公理内容是什么?教师重复学生的回答:“经过两点确定一条直线”对于一个圆来说,是否也有由几点确定的问题呢?此时教师出示课题:“72经过三点的圆”,教师这种引导虽然简短,但在学生的心理上起到了一定的定势作用,使学生明确了本节课的教学目标,学生带着一种好奇心,兴致勃勃去探索研究怎么作圆,从而调动学生学习积极性二、新课讲解:学生在教师的引导下,亲自动手试验发现经过三点的圆,这三点的位置要进行讨论有两种情况;在一条直线上三点;不在一条直线上三点,通过学生小组的讨论认为不在同一条直线上三点能确定一个圆怎样才能做出这个圆呢?这时教师出示幻灯片例1作圆,使它经过不在同一直线上三点由学生分析首先得出这个命题的题设和结论已知:ABC求作:O,使它经过A、B、C三点接着教师进一步引导学生分析要作一个圆的关键是要干什么?由于一开课在设计学校的位置时,学生已经有了印象,学生会很快回答是确定圆心,确定圆心的方法:作ABC的三边垂直平分线,三边垂直平分线的交点O就是圆心圆心O确定了,那么要经过三点A、B、C的圆的半径可以选OA或OB都可以作图过程教师示范,学生和老师一起完成一边作图,一边指导学生规范化的作图方法及语言的表达要准确定理:不在同一条直线上的三个点确定一个圆注意:经过在同一条直线上三点不能确定一个圆这样做的目的,不是教师“填鸭式”的往里灌,而是学生自己经过探索确定圆的条件,这样得到的结论印象深刻,效果要比全部由老师讲更好接着,由于学生完成了作圆的过程,引导学生观察这个圆与ABC的顶点的关系,得出:经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形强调“接”指三角形的顶点在圆上,“内接”、“外接”指在一个图形的“里面”和“外面”理解这些术语的意义,指出语言表达的规范化为了更好的掌握新概念,出示小黑板的练习题练习1:按图7-4填空: (1)ABC是O的_三角形;(2)OABC的_圆这组题的目的就是理解“内接”,“外接”的含意,练习2:判断题:(1)经过三点一定可以作圆;( )(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆;( )(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;( )(4)三角形的外心是三角形三边中线的交点;( )(5)三角形的外心到三角形各顶点的距离相等( )这组练习题主要巩固对本节课的定理和有关概念的理解,加深学生对概念辨析的准确性练习3:经过4个(或4个以上的)点是不是一定能作圆?练习4:选择题:钝角三角形的外心在三角形 A内部 B一边上 C外部 D可能在内部也可能在外部练习3、4两道小题,引导学生动手画一画,和对定理的理解是否深刻,训练学生思维的广阔性和准确性有关练习5:教材P73中4题(略)三、课堂小结:知识点方面2(1)三角形外接圆的圆心叫做三角形的外心;(2)三角形的外心是三角形三边垂直平分线的交点;(3)三角形的外心到三角形的三个顶点的距离相等3方法方面:1用尺规作三角形的外接圆的方法2重点词语的区别:“内接”,“外接”板书设计:课后反思:课题: 28.2 .2直线与圆的位置关系(第 课时)主备人:黄兴前 第个教案 总第个教案教学任务分析教学目标知识技能使学生理解直线和圆的位置关系教学思考初步掌握直线和圆的位置关系的数量关系定理及其运用解决问题通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力;2在71节我们曾学习了“点和圆”的位置关系:情感态度重点使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系难点直线和圆的位置关系与圆心到直线的距离和圆的半径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解教具准备教参、练习册、课外资料教学过程设计教师活动设计学生活动设计一、新课引入:我们已经学习过用点到圆心的距离和圆半径的大小关系来判断点和圆的位置关系,现在我们用同样的数学思想方法来研究直线和圆的位置关系,请同学们回忆:1点和圆有哪几种位置关系?2怎样判定点和圆的位置关系?我们已经了解了平面上点和圆共有三种位置关系点在圆外,点在圆上,点在圆内如果我们设O的半径为r,则有下面点与圆位置的数量关系二、新课讲解:实际上,太阳从地平线上缓缓升起时,太阳与地平线的位置关系;铁轨上飞奔的列车,它的轮子与铁轨之间的位置关系;都给了我们直线和圆的位置关系的印象,那么平面上给定一个圆和一条运动着的直线或给定一条定直线和一个运动着的圆,它们之间虽然有着若干种不同的位置关系,如果从数学角度看,它的若干种位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下学生动手画,教师巡视,当所有学生都把三种位置关系画出来时,教师可以用计算机或幻灯机给同学们作演示,演示的过程一定要用两种方法一是给定直线圆在动;另一方面是给定圆,直线在动,这样学生才能从运动的观点去研究问题最终教师指导学生从直线和圆的公共点的个数来完成直线和圆的位置关系的定义1、直线和圆有两个公共点时,叫做直线和圆相交直线叫做圆的割线2、直线和圆有唯一公共点时,叫做直线和圆相切直线叫圆的切线,唯一的公共点叫做切点3直线和圆没有公共点时,叫做直线和圆相离(三)重点、难点的学习与目标完成过程在直线和圆的位置关系中,直线和圆相切是非常重要的位置关系,在今后的学习中有重要意义,务使每位同学都要清楚除从直线和圆的公共点的个数来判断直线是否与圆相切外,是否还有其它的判定方法呢?可提示学生,从点和圆的位置关系去考察,特别要从点到圆心的距离与圆半径的关系去考察,若该直线l到圆心O的距离为d,O半径为r,指导学生观察已经确定的直线和圆的三种位置关系,很容易得到所需的结果:但是反过来,若先给定了直线到圆心的距离与圆的半径的数量关系,判断直线和圆的位置关系时,学生可能有一定的困难这时可引导学生点到直线的距离,有助于学生对困难的解决从而完成符号的左边“ ”向学生介绍符号“ ”的意义及读法练习一,已知圆的直径为12cm,如果直线和圆心的距离为(1)5.5cm;(2)6cm;(3)8cm;那么直线和圆有几个公共点?为什么?此题是直接运用性质进行判断答案:(1)两个公共点,(2)一个公共点,(3)没有公共点练习二,已知O的半径为4cm,直线l上的点A满足OA=4cm,能否判断直线l和O相切?为什么?此题再一次强调定理中是圆心到直线的距离,这是学生容易出现问题的地方答案:不能确定结合具体图形指导学生发现当OA不是圆心到直线的距离时,直线l和O相交;当OA是圆心到直线的距离时,直线l是O的切线例题(P104)在RtABC中,C=90,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2cm,(2)r=2.4cm,(3)r=3cm指导学生在对题目进行分析时指出,题中所给的Rt在已知条件下各元素已为定值,以直角顶点C为圆心的圆,随半径的不断变化,将与斜边AB所在的直线产生各种不同的位置关系,帮助学生分析好,d是点C到AB所在直线的距离,也就是直角三角形斜边上的高CD,在求直角三角形斜边上的高CD时用到三角形面积公式这个方法在今后的证明时常常用到要求学生学会这种思考问题的方法例题解法参考教材P104页三、课堂小结:为了培养学生阅读教材的习惯,请学生看教材P103-104,从中总结出本课学习的主要内容有:1从图形公共点看,直线和圆有两个公共点,直线和圆相交,直线是圆的割线;直线和圆有唯一公共点,直线和圆相切,直线是圆的切线;直线和圆没有公共点,直线和圆相离2直线和圆的位置关系的数量关系:即直线l和O相交 dr;直线l和O相切 d=r;直线l和O相离 dr3目前判断一条直线是圆的切线的方法有二:其一是直线和圆有唯一公共点,特别要强调“唯一”一词的意义;其二是圆心到直线的距离等于圆的半径板书设计:课后反思:课题: 28.2 .3切线(第 课时)主备人:黄兴前 第个教案 总第个教案教学任务分析教学目标知识技能使学生理解切线长定义教学思考使学生掌握切线长定理,并能初步运用解决问题3、逐步培养学生亲自动手实践,总结出新概念的能力情感态度重点切线长定理,它在以后的证明中经常使用难点切线长定理的归纳学生在观察后可以叙述内容,但语言可能是不规范的教具准备教参、练习册、课外资料教学过程设计教师活动设计学生活动设计一、新课引入:我们已经学习了圆的切线的性质,今天我们继续来学习圆的切线的其它性质经过平面上的已知点作已知圆的切线,会有怎样的情形呢?请同学们打开练习本画一画学生动手画,教师巡视当学生把可能的位置情况画完后,教师指导全班同学交流并得到结论:1经过圆内已知点不能作圆的切线;2经过圆上已知点可作圆的唯一一条切线;3经过圆外一已知点可作圆的两条切线二、新课讲解:观察从圆外一点所引圆的切线上,有一条线段,线段的端点一边是已知点,一边是切点务必使学生清楚,我们是把这样的一条线段的长度定义为切线长提醒学生注意,直线是没有长度的事实然后让学生观察从圆外一点引圆的两条切线会产生什么样的结论?开始不要害怕学生的语言不简炼,教师最终指导学生把握“从”、“引”、“它们”、“连线平分”、“夹角”,完成切线长定理1在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长2切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角练习一,已知:O的半径为3厘米,点P和圆心O的距离为6厘米,经过点P和O的两条切线,求这两条切线的夹角及切线长提示,如图7-66,连结OE,由切线的性质定理得RtPOE,已知OE=3,OP=6,勾股定理求出PE后,再求1,然后2倍的1练习二,如图7-67,PA、PB是O的两条切线,A、B为切点,直线OP交O于D、E,交AB于e(1)写出图中所有的垂直关系(2)写出图中所有的全等三角形例1 P119例1已知:如图7-68,P为O外一点,PA、PB为O的切线,A和B是切点,BC是直径求证:ACOP分析:欲证ACOP题中已知BC为O的直径,可想到CAAB,若能证出OPAB,问题便得到解决可指导学生考虑切线长定理,证三角形PAB为等腰三角形,再根据“三线合一”的性质,证得OPAB,证法参考教材P119例1在证明ACOP时,除了上面的方法,还可以从角的相等关系来证例2 P119,圆外切四边形的两组对边的和相等已知:如图7-69,四边形ABCD的边AB、BC、CD、DA和O分别相切于L、M、N,P求证:AB+CD=AD+BC分析:这是本书中唯一在今后可做为定理使用的例题首先教师指导学生根据文字命题正确地使用已知,求证的形式把命题具体化然后指导学生完成证明,证明过程参照教材练习三,P120中3已知:如图7-70,在ABC中,BC=14cm,AC=9cm,AB=13cm,它的内切圆分别和BC、AC、AB切于点D、E、F,求AF、BD、CE的长分析:这是一道利用几何图形的性质,采用代数的解题方法的一道计算题教学中教师要注意引导学生通过解三元一次方程组来得到切线长解:AB、AC分别切O于F、E,AF=AE同理:BF=BD,CD=CE设AF=x,BD=y,CE=z答:切线长AF=4厘米,BD=9厘米,CE=5厘米三、课堂小结:让学生阅读教材P118至P120,并总结归纳出本课的主要内容1切线长定义2切线长定理及其应用提醒学生注意由切线长可得到一个等腰三角形这一点和圆心的连线不但平分两切线的夹角,还垂直平分两切点间的线段板书设计:课后反思:课题: 28.2 .4圆与圆的位置关系(第 课时)主备人:黄兴前 第个教案 总第个教案教学任务分析教学目标知识技能本节课使学生掌握圆和圆的几种位置关系的概念及相切两圆连心线的性质教学思考使学生能够根据两圆不同的位置关系,写出两个圆半径的和或差与圆心距之间的关系式;反过来,由两圆半径的和或差与圆心距的大小关系,判定两圆的位置关系解决问题结合本节课的教学内容培养学生亲自动手实验,学会观察图形,主动获得知识的能力情感态度继续培养学生运用旧知识探求新知识的能力重点圆和圆的五种位置关系的概念及相切两圆的连心线的性质难点理解相切两圆连心线性质的证明教具准备教参、练习册、课外资料教学过程设计教师活动设计学生活动设计一、新课引入:同学们,前面我们学习了点和圆及直线和圆的位置关系,在原有知识的基础上本节课我们学习两圆的位置关系的有关知识,那么圆和圆有几种位置关系呢?教师板书课题:“713圆和圆的位置关系(一)”根据学生已有的知识水平及本节课的特点,从引导学生回顾点和圆三种位置关系到直线和圆的三种位置关系出发,激发学生通过类比探求圆和圆的位置关系有几种情况,这样可一下子抓住学生的注意力为了使学生真正体会到数学理论来源于实践,反过来又作用于实践的这一理论在学生复习了点和圆及直线和圆的位置关系的基础上,教师引导学生把课前准备好的两个不等圆的纸版拿出来,同桌两人动手实验,发现圆和圆的位置关系有五种情况的过程,由学生上黑板公布自已发现的五种情况,教师适当补充这样做的目的是鼓励学生亲自动手来参与探索新知识过程可充分调动学生的学习积极性让学生把自己得到的结论告诉同学们,对此问题不是所有同学都能理解,这时教师可以进一步引导,把得到的位置关系从投影上打出来这样做的好处是体现学生动手动脑的全过程,特别是通过自己实验总结出来的知识,更突出它的实际性不是学生被动地接受知识,而是学生积极主动获得知识,更能培养学生发散思维的能力二、新课讲解:学生得到的圆和圆的位置关系有五种情况,也就等于学生自己的科研成果公布于众请两名同学上黑板讲解得到五种位置关系的方法全班同学参与评议,同时观察图形具有的特点找一名同学以两圆公共点的个数为依据,摆放出两圆各种不同的位置:找一名同学利用运动变化的观点来得到两圆的位置设O1为动圆,O2为定圆,当O1向O2运动时,两圆的位置关系的变化如下:由学生实验得到结论,教师引导学生回答,教师概括总结:圆和圆的位置关系五种情况及各自的概念(1)两圆外离:略(2)两圆外切(3)两圆相交(4)两圆内切(5)两圆内含教师一边讲解每一种情况的定义,同时要求学生理解重点词语“内”、“外”、“内部”、“外部”这五种情况也可以归纳为三类:(2)相交接着教师引导学生思考这样问题:除根据公共点的个数可以判定两个圆的位置关系外,还有没有其它方法呢?由于圆和圆的位置关系是学生自己得到的,前两名同学发言的激发下,不少同学都想拿出自己的作品,这时教师让学生议论五分钟,然后由学生总结出又一种方法判定两圆的位置关系教师板书:设两圆半径分别为R和r,圆心矩为d,那么(1)两圆外离 dR+r(2)两圆外切 d=R+r(3)两圆相交 R-rdR=r(Rr)(4)两圆内切 d=R-r(Rr)(5)两圆内含 dR-r(Rr)同心圆 d=0接下来为了巩固所讲的知识点,投影放出一组练习题:O1和O2的半径分别为3cm和4cm,设(1)O1O2=8厘米; (2)O1O2=7厘米;(3)O1O5=5厘米; (4)O1O2=1厘米;(5)O1O2=0.5厘米; (6)O1和O2重合请回答O1与O2的位置关系怎样?这组练习题,学生思考回答,学生参与评价,老师不代替学生,知识点消化靠学生自己思维解决如果有困难的话由其它同学帮忙解决接下来教师结合图7-96讲解“把经过两圆心的直线叫做连心线”那么两圆外切、内切的切点与连心线有怎样的关系呢?本题由教师分析证明思路,在学生表示认可的情况下,由学生总结出相切两圆的性质:如果两圆相切,那么切点一定在连心线上教师这样做的目的是培养学生亲自动手操作实验,发现规律,总结出结论一方面培养学生自己探求新知识的探索精神,另一方面给学生一种自信,让他们感觉自己能行接着幻灯打出例1 如图O的半径为5cm,点P是O外一点,OP=8cm求:(1)以P为圆心作P与O外切,小圆P的半径是多少?(2)以P为圆心作P与O内切,大圆P的半径是多少?学生回答,教师板书:解:(1)设O与P外切于点A PA=OP-OA=8-5, PA=3cm(2)设O与p内切于点B PB=OP+OB=8+5, PB=13cm练习题由学生自己完成,教师不讲,学生之间互相评价三、课堂小结:课后小结由学生进行,教师概括:(一)本节所学的知识点:1圆和圆的位置关系的概念3相切两圆连心线的性质(二)本节课所学的方法:1会利用公共点的个数和定义判定两圆的位置关系2会用两圆半径和圆心距的关系判定两圆的位置关系3学会两圆相切连心线必过这两圆的切点板书设计:课后反思:课题: 28.3 .1弧长和扇形的面积(第 课时)主备人:黄兴前 第个教案 总第个教案教学任务分析教学目标知识技能复习圆周长公式教学思考理解弧长公式解决问题通过弧长公式的推导,培养学生抽象、理解、概括、归纳能力情感态度通过“弯道”问题的解决,培养学生从实际问题中抽象出数学模型的能力,综合运用所学知识分析问题和解决问题的能力重点弧长公式难点正确理解弧长公式教具准备教参、练习册、课外资料教学过程设计教师活动设计学生活动设计一、新课引入:前一阶段我们学习了圆的有关概念,知道圆上两点之间的部分叫做弧弧的度数前面已经学过了,弧应当有长度,弧的长度应如何求呢?小学我们学了圆周长公式,怎样通过圆周长求出弧长,这正是我们这节课所要研究的内容二、新课讲解:由于生产、生活实际中常遇到有关弧的长度计算,学过圆的有关性质和小学学过圆周长的基础,研究弧长公式已呈水到渠成之势,所以本节课以推导弧长公式为重点并应用弧长公式解决某些简单的实际问题,在计算过程中常出现由于对“n”理解上的错误而影响计算结果的正确清楚n圆心角所对弧长是1弧长的n倍 (复习提问):1已知O半径为R,O的周长C是多大?(安排中下生回答:C=2R),2已知O的周长是C,O的半径R等幻灯给出例1,已知:如图7-155,圆环的外圆周长C1=250cm,内圆周长C2=150cm,求圆环的宽度d(精确到1mm)圆环的宽度与同心圆半径有什么关系?(安排中学生回答,d=R1-R2)请同学们完成此题,(安排一名学生上黑板做,其余同学在下面做)(d15.9cm)我们知道,把顶点在圆心的周角等分成360份时,每一份的圆心角是1的角,因为同圆中相等的圆心角所对弧相等,所以整个圆也被等分成360份,每一份这样的弧就是1的弧,大家知道圆的周长是2R,想想看1的弧长应是多少?怎样求?(安排中等生回答:1的弧长=(安排中下生回答)哪位同学回答,n的圆心角所对的弧长l,应怎么求?(幻灯供题,学生计算,然后回答)1边长6cm的正三角形,它的内切圆周长是_;它的外接圆的周2边长4cm的正方形,它的内切圆周长是_;它的外接圆的周长3周长6cm的O,其内接正六边形的边长是_;(3cm)4已知O的周长6cm,则它的外切正方形的周长是_;(24cm)的半径是_(2cm)7如果O的半径3cm,其中一弧长2cm,则这弧所对圆心角度数是_(120)以上各题解决起来不太困难,所以应重点照顾中下学生幻灯供题:已知圆的半径R=46.0cm,求1831的圆心角所对的弧长l(保留三个有效数字)(安排一中下生上黑板做此题,其余同学在下面完成)供了分析素材假如上黑板作题的学生先把1831化为18.52后计的问题让学生们充分展开讨论在讨论过后首先让先把1831化为18.52后再代入公式计算的学生谈谈,他是怎么想的,最后由上等生或示1的n倍,由于2是1的2倍,3是1的3倍,n是1倍数n与圆心角的度数n相对应而这道题的圆心角是1831,所以需将31换算成度才能得到公式中所需的n(安排学生正确完成此题,答案,l14.9cm)请同学们再计算一题,已知圆的半径R=10cm,求1842的圆心角所对的弧长l幻灯给出例2,弯制管道时,先按中心线计算展直长度,再下料,试计算图所示管道的展直长度l(单位:mm,精确到1mm)哪位同学到前面指出图7-155中所示的管道指的哪部分?(安排举手的同学)哪位同学告诉同学们这管道的展直长度l由图中哪几部分组成?(安排中下生回答)图中的弧所对圆心角等于多少度,它的半经是多少?(安排中下生回答)请大家动笔先计算图中的弧长,(l=5001570mm)请同学们计算管道的展直长度(l=2930mm)幻灯供题:有一段弯道是圆弧形的,道长是12m,弧所对的圆心角是81,求这段弧的半径R(精确到0.1m)哪位同学到前面指出图7-157中的弯道?(安排中下生上前)道长12m指的是哪条弧的长12m?(安排中下生上前)请同学们计算出R的值,(约8.5m)三、课堂小结:本堂课复习了小学就学会的圆周长公式,在此基础上又学习了弧长公式、哪位同学能回答圆周长公式弧长公式?(安排中下生回答:C=2板书设计:课后反思:课题: 28.3 .1圆锥的面积(第 2 课时)主备人:黄兴前 第个教案 总第个教案教学任务分析教学目标知识技能使学生了解圆锥的特征,了解圆锥的侧面、底面、高、轴、母线、过轴的截面等概念,了解圆锥的侧面展开图是扇形教学思考使学生会计算圆锥的侧面积或全面积解决问题通过圆锥的形成过程的教学,培养学生观察能力、抽象思维能力和概括能力情感态度通过圆锥的面积计算,培养学生正确迅速的运算能力;通过实际问题的教学,培养学生空间想象能力,从实际问题中抽象出数学模型的能力重点1)圆锥的形成过程和圆锥的轴、母线、高等概念及其性质;(2)会进行圆锥侧面展开图的计算,计算圆锥的表面积难点准确进行圆锥有关数据与展开图有关数据的转化教具准备教参、练习册、课外资料教学过程设计教师活动设计学生活动设计一、新课引入:在小学,同学们除了学习圆柱之外还学习了一个几何体圆锥,在生活中我们也常常遇到圆锥形的物体,涉及到这些物体表面积的计算这些圆锥形物体的表面积是怎样计算出来的?这就是本节课“721圆锥的侧面展开图”所要研究的内容和圆柱一样,圆锥也是日常生活或实践活动中常见物体,在学生学过圆柱的有关计算后,进一步学习圆锥的有关计算,不仅对培养学生的空间观念有好处,而且能使学生体会到用平面几何知识可以解决立体图形的计算,为学习立体几何打基础圆锥的侧面展开图不仅用于圆锥表面积的计算,而且在生产中常用于画图下料上,因此圆锥侧面展开图是本课的重点本课首先在小学已具有圆锥直观感知的基础上,用直角三角形旋转运动的观点给出圆锥的一系列概念,然后利用圆锥的模型,把其侧面展开,使学生认识到圆锥的侧面展开图是一个扇形,并能将圆锥的有关元素与展开图扇形的有关元素进行相互间的转化,最后应用圆锥及其侧面展开图之间对应关系进行计算二、新课讲解:幻灯展示生活中常遇的圆锥形物体,如:铅锤、粮堆、烟囱帽前面屏幕上展示的物体都是什么几何体?安排回忆起的学生回答:圆锥在小学我们已学过圆锥,哪位同学能说出圆锥有哪些特征?安排举手的学生回答:圆锥是由一个底面和一个侧面围成的,圆锥的底面是一个圆,侧面是一个曲面,从圆锥的顶点到底面圆的距离是圆锥的高教师边演示模型,边讲解:大家观察RtSOA,绕直线SO旋转一周得到的图形是什么?安排中下生回答:圆锥大家观察圆锥的底面,它是RtSOA的哪条边旋转而成的?安排中下生回答:OA圆锥的侧面是RtSOA的什么边旋转而得的?安排中下生回答,斜边,因圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论