




已阅读5页,还剩68页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12 1随机事件的概率 第十二章概率 随机变量及其分布 基础知识自主学习 课时作业 题型分类深度剖析 内容索引 基础知识自主学习 1 随机事件和确定事件 1 在条件s下 一定会发生的事件 叫作相对于条件s的 2 在条件s下 一定不会发生的事件 叫作相对于条件s的 3 统称为相对于条件s的确定事件 4 的事件 叫作相对于条件s的随机事件 5 和统称为事件 一般用大写字母a b c 表示 知识梳理 必然事件 不可能事件 必然事件与不可能事件 在条件s下可能发生也可能不发生 确定事件 随机事件 2 频率与概率在相同的条件下 大量重复进行同一试验时 随机事件a发生的频率会在某个常数附近摆动 即随机事件a发生的频率具有性 这时 我们把这个常数叫作随机事件a的概率 记作p a 3 事件的关系与运算互斥事件 在一个随机试验中 我们把一次试验下发生的两个事件a与b称作互斥事件 事件a b 事件a b发生是指事件a和事件b 对立事件 不会发生 并且一定有一个发生的事件是相互对立事件 稳定 不能同时 至少有一个发生 同时 4 概率的几个基本性质 1 概率的取值范围 2 必然事件的概率p e 3 不可能事件的概率p f 4 互斥事件概率的加法公式 如果事件a与事件b互斥 则p a b 若事件a与事件互为对立事件 则p a 0 p a 1 1 0 p a p b 互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系 互斥事件是不可能同时发生的两个事件 而对立事件除要求这两个事件不同时发生外 还要求二者之一必须有一个发生 因此 对立事件是互斥事件的特殊情况 而互斥事件未必是对立事件 知识拓展 题组一思考辨析1 判断下列结论是否正确 请在括号中打 或 1 事件发生的频率与概率是相同的 2 随机事件和随机试验是一回事 3 在大量重复试验中 概率是频率的稳定值 4 两个事件的和事件是指两个事件都得发生 5 对立事件一定是互斥事件 互斥事件不一定是对立事件 6 两互斥事件的概率和为1 基础自测 1 2 3 4 5 6 题组二教材改编2 一个人打靶时连续射击两次 事件 至少有一次中靶 的对立事件是a 至多有一次中靶b 两次都中靶c 只有一次中靶d 两次都不中靶 答案 解析 至少有一次中靶 的对立事件是 两次都不中靶 解析 1 2 4 5 6 3 3 有一个容量为66的样本 数据的分组及各组的频数如下 11 5 15 5 2 15 5 19 5 4 19 5 23 5 9 23 5 27 5 18 27 5 31 5 11 31 5 35 5 12 35 5 39 5 7 39 5 43 5 3 根据样本的频率分布估计 数据落在 27 5 43 5 内的概率约是 答案 解析 1 2 4 5 6 3 题组三易错自纠4 将一枚硬币向上抛掷10次 其中 正面向上恰有5次 是a 必然事件b 随机事件c 不可能事件d 无法确定 解析抛掷10次硬币正面向上的次数可能为0 10 都有可能发生 正面向上5次是随机事件 解析 答案 1 2 4 5 6 3 5 2017 洛阳统考 安排甲 乙 丙 丁四人参加周一至周六的公益活动 每天只需一人参加 其中甲参加三天活动 乙 丙 丁每人参加一天 那么甲连续三天参加活动的概率为 解析 答案 1 2 4 5 6 3 6 2018 济南模拟 从一箱产品中随机地抽取一件 设事件a 抽到一等品 事件b 抽到二等品 事件c 抽到三等品 且已知p a 0 65 p b 0 2 p c 0 1 则事件 抽到的产品不是一等品 的概率为 解析 答案 1 2 4 5 6 0 35 3 解析 事件a 抽到一等品 且p a 0 65 事件 抽到的产品不是一等品 的概率为p 1 p a 1 0 65 0 35 题型分类深度剖析 1 从装有两个白球和两个黄球的口袋中任取2个球 以下给出了四组事件 至少有1个白球与至少有1个黄球 至少有1个黄球与都是黄球 恰有1个白球与恰有1个黄球 恰有1个白球与都是黄球 其中互斥而不对立的事件共有a 0组b 1组c 2组d 3组 解析 答案 题型一事件关系的判断 自主演练 解析 中 至少有1个白球 与 至少有1个黄球 可以同时发生 如恰好1个白球和1个黄球 故两个事件不是互斥事件 中 至少有1个黄球 说明可以是1个白球和1个黄球或2个黄球 故两个事件不互斥 中 恰有1个白球 与 恰有1个黄球 都是指有1个白球和1个黄球 故两个事件是同一事件 中两事件不能同时发生 也可能都不发生 因此两事件是互斥事件 但不是对立事件 故选b a 至多有一张移动卡b 恰有一张移动卡c 都不是移动卡d 至少有一张移动卡 解析 答案 解析至多有一张移动卡包含 一张移动卡 一张联通卡 两张全是联通卡 两个事件 它是 2张全是移动卡 的对立事件 3 口袋里装有1红 2白 3黄共6个形状相同的小球 从中取出两个球 事件a 取出的两个球同色 b 取出的两个球中至少有一个黄球 c 取出的两个球中至少有一个白球 d 取出的两个球不同色 e 取出的两个球中至多有一个白球 下列判断中正确的序号为 a与d为对立事件 b与c是互斥事件 c与e是对立事件 p c e 1 p b p c 解析 答案 解析当取出的两个球中一黄一白时 b与c都发生 不正确 当取出的两个球中恰有一个白球时 事件c与e都发生 不正确 显然a与d是对立事件 正确 c e不一定为必然事件 p c e 1 不正确 1 准确把握互斥事件与对立事件的概念 互斥事件是不可能同时发生的事件 但可以同时不发生 对立事件是特殊的互斥事件 特殊在对立的两个事件不可能都不发生 即有且仅有一个发生 2 判断互斥 对立事件的方法判断互斥事件 对立事件一般用定义判断 不可能同时发生的两个事件为互斥事件 两个事件若有且仅有一个发生 则这两事件为对立事件 对立事件一定是互斥事件 典例 2017 全国 某超市计划按月订购一种酸奶 每天进货量相同 进货成本每瓶4元 售价每瓶6元 未售出的酸奶降价处理 以每瓶2元的价格当天全部处理完 根据往年销售经验 每天需求量与当天最高气温 单位 有关 如果最高气温不低于25 需求量为500瓶 如果最高气温位于区间 20 25 需求量为300瓶 如果最高气温低于20 需求量为200瓶 为了确定六月份的订购计划 统计了前三年六月份各天的最高气温数据 得下面的频数分布表 题型二随机事件的频率与概率 师生共研 以最高气温位于各区间的频率估计最高气温位于该区间的概率 1 估计六月份这种酸奶一天的需求量不超过300瓶的概率 解答 解这种酸奶一天的需求量不超过300瓶 当且仅当最高气温低于25 由表格数据知 最高气温低于25的频率为 0 6 所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0 6 因此y大于零的概率的估计值为0 8 2 设六月份一天销售这种酸奶的利润为y 单位 元 当六月份这种酸奶一天的进货量为450瓶时 写出y的所有可能值 并估计y大于零的概率 解答 解当这种酸奶一天的进货量为450瓶时 若最高气温不低于25 则y 6 450 4 450 900 若最高气温位于区间 20 25 则y 6 300 2 450 300 4 450 300 若最高气温低于20 则y 6 200 2 450 200 4 450 100 所以 y的所有可能值为900 300 100 1 概率与频率的关系频率反映了一个随机事件出现的频繁程度 频率是随机的 而概率是一个确定的值 通常用概率来反映随机事件发生的可能性的大小 有时也用频率作为随机事件概率的估计值 2 随机事件概率的求法利用概率的统计定义求事件的概率 即通过大量的重复试验 事件发生的频率会逐渐趋近于某一个常数 这个常数就是概率 跟踪训练 2018 沈阳模拟 某超市随机选取1000位顾客 记录了他们购买甲 乙 丙 丁四种商品的情况 整理成如下统计表 其中 表示购买 表示未购买 1 估计顾客同时购买乙和丙的概率 解从统计表可以看出 在这1000位顾客中有200位顾客同时购买了乙和丙 解答 解答 2 估计顾客在甲 乙 丙 丁中同时购买3种商品的概率 解从统计表可以看出 在这1000位顾客中 有100位顾客同时购买了甲 丙 丁 另有200位顾客同时购买了甲 乙 丙 其他顾客最多购买了2种商品 解答 3 如果顾客购买了甲 则该顾客同时购买乙 丙 丁中哪种商品的可能性最大 解与 1 同理 可得 所以 如果顾客购买了甲 则该顾客同时购买丙的可能性最大 命题点1互斥事件的概率典例 2016 北京改编 a b c三个班共有100名学生 为调查他们的体育锻炼情况 通过分层抽样获得了部分学生一周的锻炼时间 数据如下表 单位 小时 题型三互斥事件 对立事件的概率 多维探究 1 试估计c班的学生人数 解答 2 从a班和c班抽出的学生中 各随机选取1人 a班选出的人记为甲 c班选出的人记为乙 假设所有学生的锻炼时间相互独立 求该周甲的锻炼时间比乙的锻炼时间长的概率 解答 解设事件ai为 甲是现有样本中a班的第i个人 i 1 2 5 事件cj为 乙是现有样本中c班的第j个人 j 1 2 8 设事件e为 该周甲的锻炼时间比乙的锻炼时间长 由题意知 e a1c1 a1c2 a2c1 a2c2 a2c3 a3c1 a3c2 a3c3 a4c1 a4c2 a4c3 a5c1 a5c2 a5c3 a5c4 因此p e p a1c1 p a1c2 p a2c1 p a2c2 p a2c3 p a3c1 p a3c2 p a3c3 p a4c1 p a4c2 p a4c3 p a5c1 p a5c2 p a5c3 p a5c4 15 命题点2对立事件的概率典例一盒中装有12个球 其中5个红球 4个黑球 2个白球 1个绿球 从中随机取出1球 求 1 取出1球是红球或黑球的概率 解答 解方法一 利用互斥事件求概率 记事件a1 任取1球为红球 a2 任取1球为黑球 a3 任取1球为白球 a4 任取1球为绿球 根据题意知 事件a1 a2 a3 a4彼此互斥 由互斥事件的概率公式 得 方法二 利用对立事件求概率 由方法一知 取出1球为红球或黑球的对立事件为取出1球为白球或绿球 即a1 a2的对立事件为a3 a4 所以取出1球为红球或黑球的概率为p a1 a2 1 p a3 a4 1 p a3 p a4 1 取出1球是红球或黑球的概率为 2 取出1球是红球或黑球或白球的概率 解答 解方法一取出1球是红球或黑球或白球的概率为p a1 a2 a3 p a1 p a2 p a3 方法二因为a1 a2 a3的对立事件为a4 求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的 求解时通常有两种方法 1 将所求事件转化成几个彼此互斥的事件的和事件 利用概率加法公式求解概率 2 若将一个较复杂的事件转化为几个互斥事件的和事件时 需要分类太多 而其对立面的分类较少 可考虑利用对立事件的概率公式 即 正难则反 它常用来求 至少 或 至多 型事件的概率 跟踪训练某保险公司利用简单随机抽样方法对投保车辆进行抽样 样本车辆中每辆车的赔付结果统计如下 解答 1 若每辆车的投保金额均为2800元 估计赔付金额大于投保金额的概率 解设a表示事件 赔付金额为3000元 b表示事件 赔付金额为4000元 以频率估计概率得 由于投保金额为2800元 赔付金额大于投保金额对应的情形是赔付金额为3000元和4000元 所以其概率为p a p b 0 15 0 12 0 27 2 在样本车辆中 车主是新司机的占10 在赔付金额为4000元的样本车辆中 车主是新司机的占20 估计在已投保车辆中 新司机获赔金额为4000元的概率 解答 解设c表示事件 投保车辆中新司机获赔4000元 由已知 可得样本车辆中车主为新司机的有0 1 1000 100 辆 而赔付金额为4000元的车辆中 车主为新司机的有0 2 120 24 辆 所以样本车辆中新司机车主获赔金额为4000元的频率为 0 24 由频率估计概率得p c 0 24 用正难则反思想求对立事件的概率 思想方法 典例 12分 某超市为了解顾客的购物量及结算时间等信息 安排一名员工随机收集了在该超市购物的100位顾客的相关数据 如下表所示 思想方法指导 规范解答 已知这100位顾客中一次购物量超过8件的顾客占55 1 确定x y的值 并估计顾客一次购物的结算时间的平均值 2 求一位顾客一次购物的结算时间不超过2分钟的概率 将频率视为概率 思想方法指导若某一事件包含的基本事件多 而它的对立事件包含的基本事件少 则可用 正难则反 思想求解 规范解答解 1 由已知得25 y 10 55 x 30 45 所以x 15 y 20 2分 该超市所有顾客一次购物的结算时间组成一个总体 所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本 顾客一次购物的结算时间的平均值可用样本平均数估计 其估计值为 2 记a为事件 一位顾客一次购物的结算时间不超过2分钟 a1 a2分别表示事件 该顾客一次购物的结算时间为2 5分钟 该顾客一次购物的结算时间为3分钟 将频率视为概率 得 课时作业 1 有一个游戏 其规则是甲 乙 丙 丁四个人从同一地点随机地向东 南 西 北四个方向前进 每人一个方向 事件 甲向南 与事件 乙向南 的关系为是a 两事件是互斥但非对立事件b 两事件是对立事件c 两事件的和事件是不可能事件d 两事件的积事件是必然事件 基础保分练 解析 答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 解析由于每人一个方向 故 甲向南 意味着 乙向南 是不可能的 故是互斥事件 但不是对立事件 2 4位同学各自在周六 周日两天中任选一天参加公益活动 则周六 周日都有同学参加公益活动的概率为 解析 答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 解析 答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 解析 答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 4 2017 湖南衡阳八中 长郡中学等十三校二模 同学聚会上 某同学从 爱你一万年 十年 父亲 单身情歌 四首歌中选出两首歌进行表演 则 爱你一万年 未被选取的概率为 解析分别记 爱你一万年 十年 父亲 单身情歌 为a1 a2 a3 a4 从这四首歌中选出两首歌进行表演的所有可能的结果为a1a2 a1a3 a1a4 a2a3 a2a4 a3a4 共6个 其中a1未被选取的结果有3个 所以所求概率p 故选b 5 下列命题 将一枚硬币抛两次 设事件m 两次出现正面 事件n 只有一次出现反面 则事件m与n互为对立事件 若事件a与b互为对立事件 则事件a与b为互斥事件 若事件a与b为互斥事件 则事件a与b互为对立事件 若事件a与b互为对立事件 则事件a b为必然事件 其中的真命题是a b c d 解析 答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 解析对于 一枚硬币抛两次 共出现 正 正 正 反 反 正 反 反 四种结果 则事件m与n是互斥事件 但不是对立事件 故 错 对于 对立事件首先是互斥事件 故 正确 对于 互斥事件不一定是对立事件 如 中的两个事件 故 错 对于 事件a b为对立事件 则在这一次试验中a b一定有一个要发生 故 正确 故b正确 解析 答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 解析掷一个骰子的试验有6种可能的结果 7 2017 武汉模拟 已知某运动员每次投篮命中的概率都为40 现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率 先由计算器产生0到9之间取整数值的随机数 指定1 2 3 4表示命中 5 6 7 8 9 0表示不命中 再以每三个随机数为一组 代表三次投篮的结果 经随机模拟产生了如下20组随机数 907966191925271932812458569683431257393027556488730113537989据此估计 该运动员三次投篮恰有两次命中的概率为 0 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 解析 答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 8 若随机事件a b互斥 a b发生的概率均不等于0 且p a 2 a p b 4a 5 则实数a的取值范围是 解析 答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 9 甲 乙两人玩数字游戏 先由甲任想一数字 记为a 再由乙猜甲刚才想的数字 把乙猜出的数字记为b 且a b 1 2 3 若 a b 1 则称甲 乙 心有灵犀 现任意找两个人玩这个游戏 则他们 心有灵犀 的概率为 解析 答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 解析甲想一数字有3种结果 乙猜一数字有3种结果 基本事件总数为3 3 9 设甲 乙 心有灵犀 为事件a 则a的对立事件b为 a b 1 即 a b 2包含2个基本事件 则该营业窗口上午9点钟时 至少有2人排队的概率是 解析 答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 74 10 经统计 在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下表 解析由表格可得至少有2人排队的概率p 0 3 0 3 0 1 0 04 0 74 11 2018 深圳模拟 有编号为1 2 3的三个白球 编号为4 5 6的三个黑球 这六个球除编号和颜色外完全相同 现从中任意取出两个球 1 求取出的两个球颜色相同的概率 解答 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 解从六个球中取出两个球的基本事件有 1 2 1 3 1 4 1 5 1 6 2 3 2 4 2 5 2 6 3 4 3 5 3 6 4 5 4 6 5 6 共15个 记事件a为 取出的两个球是白球 则这个事件包含的基本事件有 1 2 1 3 2 3 共3个 记 取出的两个球是黑球 为事件b 记事件c为 取出的两个球的颜色相同 a b互斥 根据互斥事件的概率加法公式 得p c p a b p a p b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 2 求取出的两个球颜色不相同的概率 解答 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 解记事件d为 取出的两个球的颜色不相同 则事件c d对立 根据对立事件概率之间的关系 12 某商场有奖销售中 购满100元商品得1张奖券 多购多得 1000张奖券为一个开奖单位 设特等奖1个 一等奖10个 二等奖50个 设1张奖券中特等奖 一等奖 二等奖的事件分别为a b c 求 1 p a p b p c 解答 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 解答 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 2 1张奖券的中奖概率 解1张奖券中奖包含中特等奖 一等奖 二等奖 设 1张奖券中奖 这个事件为m 则m a b c a b c两两互斥 p m p a b c p a p b p c 解答 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 3 1张奖券不中特等奖且不中一等奖的概率 解设 1张奖券不中特等奖且不中一等奖 为事件n 则事件n与 1张奖券中特等奖或中一等奖 为对立事件 现随机选取一个成员 他属于至少2个小组的概率是 他属于不超过2个小组的概率是 13 某学校成立了数学 英语 音乐3个课外兴趣小组 3个小组分别有39 32 33个成员 一些成员参加了不止一个小组 具体情况如图所示 技能提升练 解析 答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 不超过2个小组 包含 1个小组 和 2个小组 其对立事件是 3个小组 14 袋中装有黑球和白球共7个 从中任取2个球都是白球的概率为 现有甲 乙两人从袋中轮流取球 甲先取 乙后取 然后甲再取 取后不放回 直到两人中有1人取到白球时终止 每个球在每一次被取出的机会是等可能的 1 求袋中原有白球的个数 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 解答 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 所以n n 1 6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年销售经理面试题预测洞悉企业用人标准与技巧
- 桥西区二下数学试卷
- 2025版环保型空压机租赁及节能改造合同范本
- 二零二五版旧车买卖合同附车辆事故维修记录
- 二零二五年度能源消耗检测与节能评估合同
- 牛角坝中学初三数学试卷
- 2025贵州水电九局四公司招聘1人笔试参考题库附带答案详解
- 2025届中物院软件中心校招提前批火热开启笔试参考题库附带答案详解
- 2025江西省港航建设投资集团有限公司信江航运枢纽分公司招聘2人劳务外包员工笔试参考题库附带答案详解
- 2025年度凌钢集团高校毕业生招聘笔试参考题库附带答案详解
- 中国工分制管理制度
- 广东省汕头市汕头市聿怀初级中学2025届八年级英语第二学期期中学业水平测试模拟试题含答案
- 口腔门诊运营管理实务
- 2024年湖南省古丈县卫生局公开招聘试题带答案
- 毛巾关键工序管理制度
- 2025至2030年中国电动船行业市场供需态势及发展前景研判报告
- 2025-2030年中国城市轨道交通行业市场现状供需分析及投资评估规划分析研究报告
- 2025安徽龙亢控股集团有限公司招聘招聘21人笔试参考题库附带答案详解析集合
- 国企职称评聘管理制度
- T/CNCA 048-2023矿用防爆永磁同步伺服电动机通用技术条件
- 安装家具合同协议书范本
评论
0/150
提交评论