江苏省赣榆县智贤中学高考数学 专题一 第5讲 导数(1)复习教学案.doc_第1页
江苏省赣榆县智贤中学高考数学 专题一 第5讲 导数(1)复习教学案.doc_第2页
江苏省赣榆县智贤中学高考数学 专题一 第5讲 导数(1)复习教学案.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学内容:导数及其应用(1)教学目标:1.导数的几何意义2.利用导数研究函数的性质教学重点:1.导数的实际运用;2.导数的综合运用教学难点:导数的综合运用教学过程:一、知识点复习:1必记的概念与定理(1)导数的几何意义函数yf(x)在点xx0处的导数值就是曲线yf(x)在点(x0,f(x0)处的切线的斜率,其切线方程是yf(x0)f(x0)(xx0)(2)函数的单调性在(a,b)内可导函数f(x),f(x)在(a,b)任意子区间内都不恒等于0.f(x)0f(x)在(a,b)上为增函数f(x)0f(x)在(a,b)上为减函数(3)函数的极值函数的极小值:函数yf(x)在点xa的函数值f(a)比它在点xa附近其他点的函数值都小,f(a)0,而且在点xa附近的左侧f(x)0,右侧f(x)0,则点a叫做函数yf(x)的极小值点,f(a)叫做函数yf(x)的极小值函数的极大值:函数yf(x)在点xb的函数值f(b)比它在点xb附近的其他点的函数值都大,f(b)0,而且在点xb附近的左侧f(x)0,右侧f(x)0,则点b叫做函数yf(x)的极大值点,f(b)叫做函数yf(x)的极大值极小值点,极大值点统称为极值点,极大值和极小值统称为极值(4)函数的最值在闭区间a,b上连续的函数f(x)在a,b上必有最大值与最小值,要注意端点值与极值比较若函数f(x)在a,b上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在a,b上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值2记住几个常用的公式与结论四个易误导数公式及两个常用的运算法则(1)(sin x)cos x.(2)(cos x)sin x.(3)(ax)axln a(a0,且a1)(4)(logax)(a0,且a1)(5)f(x)g(x)f(x)g(x)f(x)g(x)(6)(g(x)0)3需要关注的易错易混点导数与函数单调性的关系(1)f(x)0是f(x)为增函数的充分不必要条件,如函数f(x)x3在(,)上单调递增,但f(x)0.(2)f(x)0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f(x)0时,则f(x)为常数,函数不具有单调性函数的极值与最值(1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题(2)函数在其定义区间的最大值、最小值最多有一个,而函数的极值可能不止一个,也可能没有(3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有惟一的极值,则此极值一定是函数的最值二、基础训练:1(2014太原模拟)曲线yx33x在点(0,0)处的切线方程为_解析: 因为曲线方程为yx33x,所以y3x23,故y(0)3k,则切线方程为y03(x0),即y3x.答案:y3x2函数yx2ln x的单调递减区间为_解析: 因为yx2ln x,所以yx,由y0,及x0,可得00,函数f(x)x3ax在1,)上是单调增函数,则a的最大值是_解析:f(x)3x2a在x1,)上有f(x)0,则f(1)0a3.答案:33、已知函数yx33xc的图象与x轴恰有两个公共点,则c_.解析:设f(x)x33xc,对f(x)求导可得,f(x)3x23,令f(x)0,可得x1,易知f(x)在(,1),(1,)上单调递增,在(1,1)上单调递减若f(1)13c0,可得c2;若f(1)13c0,可得c2.答案:2或24、已知函数f(x)x3ax24在x2处取得极值,若m1,1,则f(m)的最小值为_解析:求导得f(x)3x22ax,由f(x)在x2处取得极值知f(2)0,即342a20,故a3.由此可得f(x)x33

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论