冷凝器 换热分析 你们的下载是我免费提供的动力.doc_第1页
冷凝器 换热分析 你们的下载是我免费提供的动力.doc_第2页
冷凝器 换热分析 你们的下载是我免费提供的动力.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冷凝器的换热分析冷凝器和其它间壁式换热器一样通过换热表面将冷热流体隔开,使温度不同的流体在换热表面两侧流动,利用换热表面的传热作用实现冷热流体之间的热量交换。冷凝器的换热计算可以利用间壁式换热器热交换公式 进行计算,其中: :为热交换量,单位kw :为总传热系数,单位kw/(m2) :为与冷热流体接触的间壁的面积,单位m2 :为冷热流体的对数平均温差,单位由上式可以看出,为了提高冷凝器的换热效率,可以从三个方面加以考虑即增加冷凝器的换热面积、增大冷凝器中冷热流体之间的温差以及增大冷凝器的换热系数。(1)加大传热温差t是加强换热效果常用的措施之一。在冷凝器使用过程中,提高管内冷却介质蒸汽的压力,提高热水温度,冷凝器冷却水用温度较低的深井水代替自来水,空气冷却器中降低冷却水的温度等,都可以直接增加换热器传热温差t。但是,对于一定的运行环境来说,冷热流体的温度基本已经确定,这时可以通过改变冷热流体的布置来提高平均温差 ,进而达到强化传热的目的。增加传热温差t是有一定限度的,我们不能把它作为增强传热效果最主要的手段,使用过程中我们应该考虑到实际工艺或设备条件上是否允许。依靠增加换热器传热温差t只能有限度的提高换热器换热效果;同时,我们应该认识到,传热温差的增大将使整个热力系统的不可逆性增加,降低了热力系统的可用性。所以,不能一味追求传热温差的增加,而应兼顾整个热力系统的能量合理使用。(2)扩展传热面积是增加传热效果使用最多、最简单的一种方法。在扩展传热面积的过程中,如果简单的通过单一地扩大设备体积来增加传热面积或增加设备台数来增强传热量,不光需要增加设备投资,设备占地面积大,同时,对传热效果的增强作用也不明显,这种方法已经淘汰。现在使用最多的是通过合理地提高设备单位体积的传热面积来达到增强传热效果的目的,如在冷凝器上大量使用单位体积传热面积比较大的翅片管、波纹管、板翅传热面等材料,通过这些材料的使用,单台设备的单位体积的传热面积会明显提高,充分达到换热设备高效、紧凑的目的。(3)增强传热效果最积极的措施就是设法提高设备的传热系数(K)。传热系数(K)的大小实际上是由传热过程总热阻的大小来决定,传热过程中的总热阻越大,传热系数(K)值也就越低;传热系数(K)值越低,传热效果也就越差。冷凝器的传热过程主要包括冷却介质在冷凝器内壁的凝结换热、冷凝器壁上的热传导以及冷凝器与外界之间的换热三个部分。根据三种方式的影响因素及可操作的范围,热传递过程的强化主要集中在对流换热与辐射换热的领域,其中对流换热尤为活跃。国内外对强化对流换热的手段开展了广泛的研究,目前已开发出来的强化手段可大致分为无源技术(又称为被动式技术)及有源技术(又称为主动式技术)两大类。强化传热的无源技术是指除了输送传热介质的功率损耗外不再需要附加动力的技术;有源传热强化则是需要采用外加动力(机械力、电磁力)的技术。无源技术包括以下一些手段:涂层表面、粗糙表面、扩展表面、扰流元件、涡流发生器、螺旋管、添加物、冲击射流换热。有源强化技术包括:对换热介质做机械搅拌、使换热器表面振动、使换热流体振动、将电磁场作用于流体以促使换热表面附近流体的混合,将异种或同种流体喷入换热介质或将流体从换热表面抽吸走。2.5 冷凝器中凝结换热过程分析冷凝器中的蒸气遇冷凝结从其本质上说属于对流换热范围,是伴随有相变的对流换热。蒸气与低于饱和温度的壁面接触时有两种不同的凝结形式。如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。膜状凝结时,壁面总是被一层液膜覆盖着,凝结放出的相变热(潜热)必须穿过液膜才能传到冷却壁面上去。这时,液膜层就成为换热的主要热阻。而这些又取决于壁的高度(液膜流程长度)以及蒸气与壁的温度差。一般地说,层流膜状凝结表面传热系数是随壁的高度及温度差的增加而降低,而紊流膜状凝结与此相反。当凝结液体不能很好的润湿壁面时,凝结液体在壁面上形成一个个小液珠,称为珠状凝结。在珠状凝结时,由于冷凝液不能完全覆盖冷凝壁面,可认为换热是在蒸气与液珠表面和蒸气与裸露的壁之间进行的,由于液珠的表面积比它所占的壁面面积大很多,而且裸露的壁面无液膜形成的热阻,故珠状凝结的换热性能远比膜状凝结为好,具有很高的表面传热系数。在几乎所有的常用蒸气,包括水蒸气在内,在大多数工业冷凝器,特别是动力冷凝器上,实际得到的都是膜状凝结,因为珠状凝结很不稳定,目前还难于获得实用的持久性珠状凝结过程(除水银等不润湿壁面的介质外)。1916年努谢尔特(Nusselt)对竖直壁面上纯蒸汽层流膜状凝结进行了理论分析。他根据连续液膜层流运动及导热机理,建立了液膜运动微分方程式和能量方程式,然后求解液膜内的速度场和温度场,从而得出表面传热系数的理论解。 (2.1-1)该式计算结果一般较实验结果约低20%,但该理论解是层流膜状凝结换热计算的基础。在工程计算中通常采用把理论式系数增加20%的实验公式,即: (2.1-2)如果凝结壁面是与水平方向成一定的倾斜角度时,只要将计算公式中的重力加速度用修正数值 代入即可。努塞尔公式推广到水平管的层流膜状凝结时,平均表面传热系数计算式为 (2.1-3)在使用以上膜状凝结换热的计算公式时所涉及的液体和蒸汽物性量,除汽化潜热在蒸汽饱和温度下取值外,均在膜温度 下取值。一般的讨论都是针对饱和蒸气的凝结而言的。对于过热蒸气,实验证明只要把计算式中的潜热改用过热蒸气与饱和液的焓差,也可以采用饱和蒸气的实验关联式计算过热蒸气的凝结换热。在制冷系统中,进入冷凝器的冷却介质蒸气通常都具有一定的过热度14,冷凝器中绝大多数情况下发生的实际上是具有过热的蒸气凝结过程。到目前为止,对具有过热的蒸气凝结换热特性研究的文献报导不多。Sparrow等相似变换方法研究了过热蒸气在垂直平板的凝结过程。根据与Chen的管内对流沸腾换热系数计算关系式的比拟方法。Lee等假定具有过热的蒸气凝结换热系数可以表示为显热传递的对流项与饱和蒸气凝结换热的凝结项的叠加。在此基础上,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论