八年级数学上册 5.3 一次函数教案 (新版)浙教版.doc_第1页
八年级数学上册 5.3 一次函数教案 (新版)浙教版.doc_第2页
八年级数学上册 5.3 一次函数教案 (新版)浙教版.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

5.3 一次函数 教学目标:1、知道一次函数的意义. 并结合具体情境体会一次函数的意义2、能根据所给信息确定一次函数表达式,并掌握一次函数表达式。3、学会用待定系数法求解一次函数表达式。4、经历现实生活中变量与变量之间关系的探索过程,初步建立线性关系的概念,进一步发展学生的抽象思维能力。5、能通过函数获取信息,发展学生的形象思维能力6、初步体会方程和函数的关系教学重点:对于一次函数的理解求一次函数的解析式教学难点:根据具体条件求一次函数的解析式教学准备:多媒体,投影教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:时间教 师 活 动学 生 活 动3253376583引入新课: 就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是一次函数. 顾名思义,谁能根据一次函数这个名字,类比一元一次方程、一元一次不等式的概念能举出一些一次函数的例子? 这些函数有什么共同特点呢? (由学生思考讨论归纳)一次函数: 一般地,如果y=kx+b (k .b是常数,k0)(括号内用红字强调)那么y叫做x的一次函数 特别地,当b=0时,一次函数y=kx+b就成为 y=kx(k是常数,k0),是正比例函数练习:1、判断哪些函数是一次函数:,2、如果是关于 的一次函数,那么 例1:已知一次函数,当时,求。解:(略)例2:已知是的一次函数,当时,当时,求:(1)这个一次函数的关系式和自变量的取值范围。(2)当时函数的值。 (3)当时自变量的值。解:(略)练习:1、已知s是t的一次函数,并且当t=1时,s=2;当t=-2时,s=23,用待定系数法求出这个一次函数的关系式。2、已知6y+1与4x-2成正比例。(1) 证明y是x的一次函数。(2) 如果当x=0.75时,y=0,试求y与x的函数关系式。引例:小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的cd随身听(价值1680元)(1)列出小丸子的银行存款(不计利息)y与月数x 的函数关系式; (2)多长时间以后,小丸子的银行存款才能买随身听?探究活动:某居民小区按照分期付款的福利售房方式购房,政府给予一定的贴息.小明家购得一套现款价值120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款利息的和.(剩余欠款年利率为0.4%)(1)若第年小明家交付房款y元,求y与x 的函数关系式; (2)求第三、第十年的应付房款值.机动补充:1、某电信公司手机收费标准如下:月租费20元,另外每通话1分钟收费0.2元。(1)写出每月应缴用费y元与通话时间x分钟的函数关系式。(2)若某月的通话时间为172分钟,应缴费用多少?(3)若本月预缴150元,可通话多长时间?2、某电信局收取网费如下:163网费每小时3元;169网费每小时2元,但要收15元月租。请分别写出网费y元与上网时间x小时的函数关系式。某网民每月上网19小时,他应选择哪种上网?小结:1、 一次函数关系式(k、b为常数,)2、 一次函数与正比例函数的关系3、 用待定系数法求解函数关系式作业:见作业本学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上注意根据学生情况适当引导,看能否归纳出一般结果不难看出函数都是用自变量的一次式表示的,可以写成 y=kx+b 的形式了解、明确一次函数和正比例函数的关系:正比例函数是特殊的一次函数。练习,巩固一次函数的基本概念一次函数有两个基本特征:其一是自变量x的次数是1;其二是自变量的系数 k0稍作分析,由学生自己来完成这里,先设所求的一次函数关系式为,其中,是待确定的常数,然后根据已知条件列出以,为未知数的方程组,求得,的值,从而求出所求的关系式。这种求函数关系式的方法叫做待定系数法。待定系数法是一种重要的数学方法,有广泛的用途。对函数关系式的深刻领会待定系数法的巩固应用分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱分组讨论,合作探究1、 有哪些量?有怎样的数量关系?等量关系?2、 判断应是哪种函数?3、 如何建立函数关系式?注意取值范围学有余力的同学可作为拓展加深联系社会生活,学以致用熟练掌握函数的形式,理解一次函数与正比例

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论