




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 绪论在工程和科学技术发展过程中,自动控制担负着重要的角色。除了在宇宙飞船系统、导弹制导系统和机器人系统等领域中,自动控制具有特别重要的作用之外,它已成为现代机器制造业和工业生产过程中的重要而不可缺少的组成部分。例如,在制造工业的数控机床控制中,在航空和航天工业的自动驾驶仪系统设计中,以及在汽车工业的小汽车和大卡车设计中,自动控制都是必不可少的。此外,在工业中的过程控制,对压力、温度、湿度、黏性和流量的控制等工业操作过程,自动控制也是不可缺少的。 自动控制理论和实践的不断发展,为人们提供了获得动态系统最佳性能的方法,提高了生产率,并且使人们从繁重的体力劳动和大量重复性的手工操作中解放出来。1.2控制系统的分类1.2.1 反馈控制系统能对输出量与参考输入量进行比较,并且将它们的偏差作为控制手段,以保持两者之间预定关系的系统,称为反馈控制系统。室温控制系统就是反馈系统的例子。通过实际室温,并且将其与参考温度(希望的室温)进行比较,温室调机器就会按照某种方式,加温或冷却设备打开或关闭,从而将室温保持在使人们感到舒适的水平上,且与外界条件无关。反馈系统并不限于工程系统,在各种不同的非工程领域,同样存在着反馈控制系统。1.2.2 闭环控制系统反馈控制系统通常属于闭环控制系统。在实践中,反馈控制和闭环控制这两个术语通常交换使用。在闭环控制系统中,作为输入信号与反馈信号(反馈信号可以是输出信号本身,也可以是输出信号的函数及其导数和/或其积分)之差的作用误差信号被传送到控制器,以便减小误差,并且使系统的输出达到希望的值。闭环控制这个术语,总是意味着采用反馈控制作用,以减小系统误差。1.2.3 开环控制系统系统的输出量对控制作用没有影响的系统,称为开环控制系统。换句话说,在开环控制系统中,既不需要对输出量进行测量,也不需要将输出量反馈到系统的输入端与输入端进行比较。 在任何开环控制系统中,均无需将输出量与参考输入量进行比较。因此,对应于每一个参考输入两,有一个固定的工作状态与之对应。这样,系统的精确度便取决于标定的精确度。当出现扰动时,开环系统便不能完成既定任务了。在实践中,只有当输入量与输出量之间的关系一直,并且不出在内部扰动,也不存在外部扰动的时候,才能用开环控制系统。1.2.4 控制系统比较闭环控制系统的优点是采用了反馈,因而使系统的响应对外部干扰和内部系统的参数变化均相当不敏感。这样,对于给定的控制对象,有可能采用不太精密且成本较低的元件构成精确的控制系统。在开发情况下,就不可能做到这一点。 从稳定性的观点出发,开环控制系统比较容易建造,因而对开环系统来说,稳定性不是主要问题。但是另一方面,在闭环控制系统中,稳定性则始终是一个重要的问题,因为闭环系统可能引起过调误差,从而导致系统进行等幅振荡或变幅振荡。 应当强调指出,当系统的输入量能预先知道,并且不存在任何扰动时,采用开环控制比较合适。只有当存在着无法预计的扰动和(或)系统中的元件的参数存在着无法预计的变化时,闭环控制系统才具有优越性。还应指出,系统输出功率的大小在某种程度上确定了控制系统的成本,重量和尺寸。闭环控制系统采用的元件数量比相应的开环控制系统要多,因此闭环控制系统的成本和功率通常比较高。为了减小系统所需要的功率,在可能的情况下,应当采用开环控制系统。将开环控制与闭环控制适当的结合在一起,通常比较经济,并且能够或得满意的综合系统性能。1.3 自动控制器简介自动控制器将被控对象输出量的实际值与参考输入量(要求的值)进行比较,确定出偏差,并产生控制信号,以便使偏差减小到零或很小的值。自动控制器产生控制信号的方式,称为控制作用。 图1.1 工业控制系统框图如图是一种工业控制系统方块图,它是由自动控制器、执行器、被控对象和传感器(测量元件)组成的。控制器检测出功率通常很低的作用误差信号,并且将其放大到足够高的水平。自动控制器的输出传送至执行器,例如传送至电动机、液压马达、气动马达或阀。(执行器是一种动力装置,它根据控制信号的要求,产生被控对象的输入量,从而使输出信号趋于参考输入信号。) 传感器或测量元件,是一种将输出变量转变为另一种适当变量的装置,这里所说的适当变量如位移、压力或电压,可以用来将输出量与参考输入信号进行比较。这种元件位于闭环系统的反馈通达上。控制器的设定值必须转变为参考输入量,并且应具有与来自传感器或测量元件的反馈信号相同的单位 1.4 现代控制理论简介工程系统正朝着更加复杂的方向发展,这主要是由于复杂的任务和高精度的要求所引起的。复杂系统可能具有多输入量和多输出量,并且可能是时变的。由于需要满足控制系统性能提出的日益严格的要求,系统的复杂程度越来越大,并且要求能够方便地用大型计算机对系统进行处理。一种对复杂控制系统进行分析和设计的新方法,即现代控制理论,大约从1960年开始发展起来。这种新方法是建立在状态概念之上的。状态本身并不是一个新概念,在很长一段时间内,它已经存在于古典动力学和其他一些领域中。现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中1。1.4.1 现代控制理论发展过程现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。19601961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。1.4.2 现代控制理论的学科内容现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。 线性系统理论 它是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。 非线性系统理论 非线性系统的分析和综合理论尚不完善。研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。更一般的非线性系统理论还有待建立。从70年代中期以来,由微分几何理论得出的某些方法对分析某些类型的非线性系统提供了有力的理论工具。 最优控制理论 最优控制理论是设计最优控制系统的理论基础,主要研究受控系统在指定性能指标实现最优时的控制规律及其综合方法。在最优控制理论中,用于综合最优控制系统的主要方法有极大值原理和动态规划。最优控制理论的研究范围正在不断扩大,诸如大系统的最优控制、分布参数系统的最优控制等。 随机控制理论 随机控制理论的目标是解决随机控制系统的分析和综合问题。维纳滤波理论和卡尔曼-布什滤波理论是随机控制理论的基础之一。随机控制理论的一个主要组成部分是随机最优控制,这类随机控制问题的求解有赖于动态规划的概念和方法。 适应控制理论 适应控制系统是在模仿生物适应能力的思想基础上建立的一类可自动调整本身特性的控制系统。适应控制系统的研究常可归结为如下的三个基本问题:识别受控对象的动态特性;在识别对象的基础上选择决策;在决策的基础上做出反应或动作。1.4.3 现代控制理论与传统控制理论的比较现代控制理论与窗同控制理论形成鲜明的对照,前者适用于多输入、多输出系统,系统可以是线形的或非线形的,也可以是定常的或时变的;后者则仅仅适用于线形、定常、单输入、单输出系统。此外,现代控制理论本质上是一种时域方法,而传统控制理论则是一种复频域方法。1.2 小结本章对控制系统以及控制器做了简单的介绍,了解了控制系统在当今社会的重要作用,同时也对不同的控制系统有了了解。对于控制器的介绍,则使我们从宏观来到了微观,真正明白了控制系统的工作原理。现代控制理论的引入则为控制系统的更好发展做好了条件。在现代控制理论的指导下,控制系统将会发展的更加完善。第二章 双自由度控制器2.1引言 在自动控制系统的设计过程中,目标值跟踪特性和外扰抑制特性是设计者关注两个主要问题。在过去的控制中,定值系统强调外扰抑制特性,随动系统强调目标值跟踪特性,两种特性均要求十分严格的场合比较少见。但是随着高新技术的发展和应用,对自动控制系统的要求越来越高,同时要求目标值跟踪特性和外扰抑制特性最佳的系统愈来愈多。而目前在工业控制中广泛采用的PID调节器只能设定一组控制参数,(称一自由度控制方式,控制器结构图如图1所示)一般来讲,若按干扰抑制特性最优来整定参数,则目标值跟踪特性差;若按目标值跟踪特性最优来整定参数,则干扰抑制特性差,所以PID调节器的参数整定通采用折衷的方法。这样做一般能满足大多数控制系统的要求,但对于高性能系统则难以达到控制系统的期望特性。针对这一问题,国内外学者提出二自由度控制的思想,其控制结构如图2所示。图1一自由度控制器结构图图2二自由度控制嚣结构图 2.2 双自由度控制所谓二自由度控制一般说来是指:采用图2这种控制系统结构,将控制器c分解,采用适当的设计方法,找到两组独立的参数并设计出两个独立的控制器,分别用来获得最优的目标跟踪值特性和干扰抑制特性,从而达到控制系统的期望特性。 2.2.1单自由度系统考虑图一所示的系统,图中系统受到揉动输入d(t)和噪声输入n(t)的作用。GP(S)是控制系统的传递函数。假设GP(S) 是固定的并且是不可改变的。对于这个系统,我们可以导出3个闭环传递函数,也就是Ys /R(s)=Gyr,Y(s)/D(s)=Gyd以及Y(s)/N(s)=Gyn。1 Gyr= YsRs = GcGp1+GcGp2 Gyd= YsDs= Gp1+GcGp3 Gyn=YsNs= -GcGp1+GcGp在推导Ys /R(s)的时候,假设D(s)=0以及N(s)=0。同理,在推导Y(s)/D(s)和Y(s)/N(s)时,分别应用类似的推导条件。所谓控制系统的自由度是指闭环传递函数中有几个是独立的。在当前情况下,有如下两个:Gyr=Gp-GydGp Gyn=Gyd-GpGp在3个闭环传递函数Gyr Gyd Gyn中,如果给定其中一个,其余两个便被固定了。这意味着图一所示的系统是一个单自由度系统。2.2.1双自由度系统下面讨论图二所给的系统,在图中Gp(s)为控制对象的传递函数,假设它是固定的并且是不能改变的。对于这个系统,闭环传递函数 Gyr Gyd 和Gyn 分别为Gyr=Y(s)R(s)=Gc1Gp1+(Gc1+Gc2)GpGyd = Y(s)D(s)=Gp1+(Gc1+Gc2)GpGyn= Y(s)N(s)=(Gc1+Gc2)Gp1+(Gc1+Gc2)Gp由此,我们得到 Gyr=Gc1GydGyn=Gyd-GpGp在这种情况下,如果给定Gyd,那么Gyn就是固定的,但是Gyr不是固定的,因为Gc1与Gyd是无关的。因此。在这3个闭环传递函数Gyr Gyd 和Gyn中,有两个闭环传递函数是独立的,因此,该系统是一个二自由度控制系统。类似的图三所示的系统也是一个双自由度控制系统 图3 复合前馈型双自由控制系统因为对于该系统而言,存在下列关系式:Gzr=Z(S)R(S)=Gc1Gp1+Gc1Gp+Gc2Gp1+Gc1GpGzw=Z(S)W(S)=Gp1+Gc1GpGzv=Z(S)V(S)= - Gc1Gp1+Gc1Gp通过计算我们可以得到 Gzr=Gc2Gzw+Gp-GzwGp (1)以及GZV=GZW-GpGp (2)从1式以及2式我们可以看到,如果给定Gzw,那么GZV是固定的。但是Gzr并不是固定的,因此Gzr和Gzw无关。 2.3 双自由控制对系统性能的调节当我们设计系统的时候,一些瞬态响应特性是我们的重要参考依据。例如阶跃响应中的上升时间,最大超调量和调整时间。同时我们也要参考一些稳态特性,例如斜坡输入的跟踪误差。反馈将系统的输出返回到输入端并以某种方式改变输入,进而影响系统功能的过程,即将输出量通过恰当的检测装置返回到输入端并与输入量进行比较的过程。反馈可分为负反馈和正反馈。前者使输出起到与输入相反的作用,使系统输出与系统目标的误差减小,系统趋于稳定;后者使输出起到与输入相似的作用,使系统偏差不断增大,使系统振荡,可以放大控制作用。反馈可以减小扰动的影响。减轻模型误差或者参数变化的时候控制系统受到的影响。在双自由度系统中,我们为了改善系统的稳态响应,闭环特性以及反馈特性都可以独立的进行调节。在一个系统中如果存在扰动和传感器噪声时,我们为了提高这个系统的性能,必须考虑下面的问题:1 抗干扰特性2系统跟踪特性3对传感器噪声的灵敏度4 模型误差的灵敏度5稳定裕量下面我们讨论双自由度控制控制系统是如何实现对上面性能改善的。以图3所示的系统为例。图3 复合前馈型双自由控制系统1抗干扰特性。系统抗干扰的程度可以用扰动量W与输出量之间的函数Gzw跟扰动量与输出量之间的前向传递函数Gp的比值来表示,我们设为Sd Sd=GzwGp=11+Gc1Gp (2.1)为了使系统或得良好的抗干扰特性,我们需要在很宽的频率范围内使Sd很小 2系统的跟踪特性。我们需要系统保持较小的跟踪误差。系统的跟踪特性由下列传递函数Gzr确定Gzr=Z(S)R(S)=Gc1Gp1+Gc1Gp+Gc2Gp1+Gc1GpGzr需要在很宽的频率范围内接近1才能获得良好的跟踪特性。为了达到上述目的,我们可以调整2个独立的控制器C1,C2. 3对传感器噪声的灵敏度。我们需要系统对噪声的灵敏度较小。而对于噪声的影响。是由传递函数Gzv确定的Gzv=Z(S)V(S)= - Gc1Gp1+Gc1Gp 4对模型误差的灵敏度。当我们再设计系统的时候,我们的设计是基于给定对象模型的。但是这种模型并非精确的反映,它只是对被控制对象实际动态特性的一种近似。而实际被控制对象的动态特性与模型动态特性之间的差别与模型与实际系统的误差有关,引起模型误差的原因可能有如下几种:1忽略被控制对象的非线性特性2忽略被控制对象的高频特性(例如,在机械系统中,可能会具有的高频动态现象,包括共振,或率弹簧质量的影响等等)3系统的一系列参数的精度不够理想4被控制对象的特性有可能随着时间的变化而变化我们知道,实际被控对象与控制对象的模型是有区别的 ,也就是存在模型误差。我们控制对象模型的传递函数为GPGp。而实际控制对象的传递函数为Gp,那么他们之间的差值定义为G,即G,= Gp-Gp系统此时的灵敏度与存在模型误差的响应和不存在模型误差时系统的响应之间的差值有关系,这是因为Gzr=Z(S)R(S)=Gc1Gp1+Gc1Gp+Gc2Gp1+Gc1Gp而Gzr的变化,我们可以写成Gzr=(Gc1+Gc2)(Gp+G)1+Gc1Gp-(Gc1+Gc2)Gp1+Gc1Gp =Gc1+Gc2G1+Gc1Gp+G1+Gc1Gp以上2式相除,我们可以得到GzrGzr=GGp11+Gc1Gp (2.2)上面的方程表明,Gzr的相对变化等于11+Gc1Gp与控制对象传递函数相对变化的乘积(虽然Gzr既与Gc1有关,同时又跟Gc2有关,但是Gzr的相对变化GzrGzr仅仅跟Gc1有关系)我们定义S = 11+Gc1Gp (2.3)S是频率w的函数。为了使系统的灵敏度较好,在所考虑的频率范围内,S(jw)必须很小。 由方程(2.1)定义的Sd以及由方程(2.3)定义的S是相同的。方程(2.3)成为系统的灵敏度函数。 在高性能系统中,高频动态特性必须包含在他们的数学模型中,而且校正装置的设计必须以这种模型为基础。如果控制对象的高频动态特性是不知道的,那么我们需要将高频增益保持在较低的水平上,以便抑制系统有可能产生的各种高频现象。5.稳定裕量。在上面我们讨论的模型误差时如何影响控制系统的稳定性,在控制系统的研究中是一个重要的问题。我们知道在反馈控制系统中,稳定性是由以下的条件确定的:开环传递函数 GC1Gp=Gc1(Gp+G) 是否能够满足奈奎斯特稳定性的条件的要求。再设计控制系统时候,我们总是使Gc1Gp满足奈奎斯特稳定性的条件的要求。对于给定的频率w如果GC1(jw)G(jw)的幅值小于-1+j0点与GC1(jw)Gp(jw)之间的距离,那么GC1Gp也满足奈奎斯特稳定性的条件。这就是说,如果 GC1G1+Gc1Gp (2.4)那么控制系统就是稳定的,定义 T=Gc1Gp1+Gc1Gp (2.5) 那么不等式(2.4)就可以写成 GGp L(jw) (2.7)如果不等式(2.7)得到满足,那么可以保证系统稳定。这就意味着只要模型误差在所有的频率范围上均保持在1/T以下,那么系统就是稳定的。参考(2.3)以及(2.5),我们可以得到一下关系式: S(jw)+T(jw)=1 (2.8)也就是说,灵敏度函数与辅助灵敏度函数的和总是等于1。因此在同一个频率上,使S(jw)和T(jw)两者都比较大或者比较小时不可能的。 参考方程(2.7)与(2.8),我们看到,在高频范围内,当L(jw)大于1得时候我们可以得到 T(jw)1-1L(jw) ,L(jw)1 如果S(jw)和T (jw)满足这些不等式,那么系统的稳定性得到保证。 L(jw)表明了T(jw)幅值的上限。因为 T(jw)=Gc1jwGp(jw)1+Gc1jwGp(jw)并且在高频时候,Gc1(jw)Gp(jw) 1,所以当w 趋于无穷大时,T(jw)就趋于Gc1(jw)Gp(jw)。因此,我们看到,在高频范围内, Gc1(jw)Gp(jw)1L(jw)这表明模型误差确定了环路增益的上限。 根据上面的分析,我们可以得到下列的结论:1. 为了改善系统的抗干扰性能,我们应当使S(jw)减小。2. 为了使对模型误差的灵敏度减下,应当使S(jw)减小。3. 为了改善稳定性裕量,应当使T(jw)减小。4. 为了使对传感器噪声的灵敏度减小,应当使T(jw)减小。我们注意到,S(jw)+T(jw)=1。我们发现,虽然跟踪性能只取决于Gc1和Gc2,但是抗干扰特性对模型误差的灵敏度,稳定性与里昂和对传感器噪声的灵敏度只和Gc1有关。这表明Gc1确定反馈回路的特性,而Gc2影响参考输入和系统输出之间的闭环传递函数。 在设计双自由度控制系统的时候,也就是在调整双自
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国际商务礼仪与文化交流练习题
- 音乐欣赏考试试题及答案
- 异地主播考试试题及答案
- 六一儿童节冬泳活动方案
- 六一各班活动方案
- 六一基地活动方案
- 六一慰问活动方案
- 六一教师聚会活动方案
- 六一活动大扫除活动方案
- 六一活动联谊活动方案
- 《论文写作》课件 第1章 论文写作的基本概念
- 拆除临时用电施工方案
- 高级病理学与病理学实验技术知到智慧树章节测试课后答案2024年秋浙江中医药大学
- 2025年煤矿安全生产管理人员安全资格考试复习题库及答案(共三套)
- 心肺复苏课件2024
- 产后抑郁症的预防与护理
- 2025年1月福建省普通高中学业水平合格性考试语文仿真模拟卷02(春季高考适用)(考试版)
- 《粉尘分散度和游离》课件
- 物业管理会务服务方案
- 新就业形态劳动者的风险识别及治理机制研究
- 酒店店长劳务合同模板
评论
0/150
提交评论