




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
免 财富值! 欢迎分享! 二、函数一、映射与函数:(1)映射的概念: (2)一一映射:(3)函数的概念:如:若,;问:到的映射有3个,到的映射有4个;到的函数有81个,若,则到的一一映射有 个。函数的图象与直线交点的个数为 个。二、函数的三要素:定义域,值域,对应法则。相同函数的判断方法: ; (1)函数解析式的求法:定义法(拼凑):换元法:待定系数法:赋值法: (2)函数定义域的求法:,则g(x); 则f(x);,则f(x); 如:,则;含参问题的定义域要分类讨论;对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。如:已知扇形的周长为20,半径为,扇形面积为,则 r;定义域为 。(3)函数值域的求法:配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;换元法:通过变量代换转化为能求值域的函数,化归思想;三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;基本不等式法:转化成型如:,利用平均值不等式公式来求值域;单调性法:函数为单调函数,可根据函数的单调性求值域。 数形结合:根据函数的几何图形,利用数型结合的方法来求值域。求下列函数的值域:(2种方法);(2种方法);(2种方法);三、函数的性质:函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。应用:比较大小,证明不等式,解不等式。奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) f(-x)=0 f(x) =f(-x) f(x)为偶函数;f(x)+f(-x)=0 f(x) =f(-x) f(x)为奇函数。判别方法:定义法,图像法,复合函数法应用:把函数值进行转化求解。周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(xa),则2a为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)平移变换y=f(x)y=f(x+a),y=f(x)+b注意:()有系数,要先提取系数。如:把函数()经过 平移得到函数()的图象。()会结合向量的平移,理解按照向量(,)平移的意义。对称变换y=f(x)y=f(x),关于轴对称y=f(x)y=f(x) ,关于轴对称y=f(x)y=f|x|,把轴上方的图象保留,轴下方的图象关于轴对称y=f(x)y=|f(x)|把轴右边的图象保留,然后将轴右边部分关于轴对称。(注意:它是一个偶函数)伸缩变换:y=f(x)y=f(x), y=f(x)y=Af(x+)具体参照三角函数的图象变换。一个重要结论:若f(ax)f(a+x),则函数y=f(x)的图像关于直线x=a对称;五、常用的初等函数:(1)一元一次函数:,当时,是增函数;当时,是减函数;(2)一元二次函数:一般式:;对称轴方程是x=-;顶点为(-,);两点式:;对称轴方程是x=与轴交点(x,0)(x,0);顶点式:;对称轴方程是x=k;顶点为(k,h);一元二次函数的单调性: 当时:(-)为增函数;(-)为减函数;当时:(-)为增函数;(-)为减函数;二次函数求最值问题:首先要采用配方法,化为的形式,有三个类型题型:(1)顶点固定,区间也固定。如:(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。(3)顶点固定,区间变动,这时要讨论区间中的参数二次方程实数根的分布问题: 设实系数一元二次方程的两根为(3)反比例函数:(4)指数函数:指数运算法则: , , 。指数函数:y= (ao,a1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a1和0ao,a1) 图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a1和0a1两种情况进行讨论,要能够画出函数图象的简图。注意:(1)与的图象关系是关于y=x对称;(2)比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较。(3)已知函数的定义域为,求的取值范围。已知函数的值域为,求的取值范围。六、的图象:定义域: ;值域: ; 奇偶性: ; 单调性: 是增函数; 是减函数。七、补充内容:抽象函数的性质所对应的一些具体特殊函数模型:正比例函数;指数函数;对数函数;课本题1设集合,则集合且= 。2若集合且,则 。3设集合,且,则实数 。4已知二次函数满足,则= 。 5已知函数的值域为R,则的取值范围是 。6已知函数的值域是1,4 ,则的值是 。7若函数,的图象关于直线对称,则 。8函数的图象与的图象关于直线y=x对称,那么的单调减区间是 。9函数的图象的对称中心是(3,-1),则实数a= 。10是R上的减函数,且的图象经过点A(0,1)和B(3,-1),则不等式 的解集为 。11如果函数是奇函数,则= 。12已知函数如果则(1,) 。13关于的方程有负根,则a的取值范围是 。14定义在区间内的函数满足,则= 。15对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年江苏省扬州市中考语文试卷及答案
- 2025年仿制药一致性评价对药品生产设备更新的推动报告
- 元宇宙社交平台虚拟社交互动体验优化与用户粘性提升策略
- 国际教育咨询服务在中国的发展现状与竞争格局研究报告2025版
- 财富管理行业数字化转型:金融科技如何优化客户服务体验报告
- 科技与互联网融合下的互联网金融服务风险控制技术体系构建报告
- 深度解读2025年制造业数字化转型数据治理战略与实施
- 护理礼仪与人际沟通教学课件第九章护理工作中的人际沟通
- 核酸耗材运送管理制度
- 担保公司抵押物管理制度
- 2025年云南省中考语文试卷真题
- 2025春季学期国开电大专科《机械制图》一平台在线形考(形成性任务1至4)试题及答案
- 文具店创业计划书文具店创业准备计划书范文
- 银川永宁县社区工作者招聘笔试真题2024
- 单位办公室文员考试试题及答案
- 浙江省强基联盟2024-2025学年高二下学期5月联考试题 物理 PDF版含解析
- 自来水考试试题大题及答案
- (2025)发展对象考试题库与答案
- 北京师范大学《微积分(2)》2023-2024学年第二学期期末试卷
- 海关总署在京直属事业单位招聘考试真题2024
- 大学生自杀统计报告和多重因素分析
评论
0/150
提交评论