




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
29 5正多边形与圆 导入新课 讲授新课 当堂练习 课堂小结 学练优九年级数学下 jj 教学课件 第二十九章直线与圆的位置关系 1 了解正多边形和圆的有关概念 2 理解并掌握正多边形半径 中心角 边心距 边长之间的关系 重点 3 会应用正多边形和圆的有关知识解决实际问题 难点 问题1观察下面多边形 它们的边 角有什么特点 特点 各边相等 各内角都相等的多边形 导入新课 观察与思考 问题2观看大屏幕上这些美丽的图案 都是在日常生活中我们经常能看到的 你能从这些图案中找出类似的图形吗 问题3圆具有哪些对称性 圆既是轴对称图形又是中心对称图形 问题1什么叫做正多边形 各边相等 各角也相等的多边形叫做正多边形 问题2矩形是正多边形吗 为什么 菱形是正多边形吗 为什么 不是 因为矩形不符合各边相等 不是 因为菱形不符合各角相等 正多边形 各边相等 各角相等 缺一不可 讲授新课 问题3正三角形 正四边形 正五边形 正六边形都是轴对称图形吗 都是中心对称图形吗 正n边形都是轴对称图形 都有n条对称轴 只有边数为偶数的正多边形才是中心对称图形 问题3正三角形 正四边形 正五边形 正六边形都是轴对称图形吗 都是中心对称图形吗 问题1怎样把一个圆进行四等分 问题2依次连接各等分点 得到一个什么图形 o 问题引导 问题3刚才把一个圆进行四等分 依次连接各等分点 得到一个正四边形 你可以从哪方面证明 o 直径所对圆周角等于90 等弧所对圆周角相等 a e 把 o进行5等分 依次连接各等分点得到五边形abcde 1 填空 a o e d c b acd 3 3 2 这个五边形abcde是正五边形吗 简单说说理由 像上面这样 只要把一个圆分成相等的一些弧 就可以作出这个圆的正多边形 这个圆就是这个正多形的外接圆 这个正多边形也称为这个圆的内接正多边形 探究归纳 问题1 o c d a b m 半径r 圆心角 弦心距r 弦a 圆心 中心角 a b c d e f o 半径r 边心距r 中心 类比学习 圆内接正多边形 外接圆的圆心 正多边形的中心 外接圆的半径 正多边形的半径 每一条边所对的圆心角 正多边形的中心角 边心距 正多边形的边心距 60 120 120 90 90 90 120 60 60 正多边形的外角 中心角 完成下面的表格 如图 已知半径为4的圆内接正六边形abcdef 它的中心角等于度 ocbc 填 或 obc是三角形 圆内接正六边形的面积是 obc面积的倍 圆内接正n边形面积公式 c d o b e f a p 60 等边 6 探究归纳 例 有一个亭子 它的地基是半径为4m的正六边形 求地基的周长和面积 精确到0 1m2 c d o e f a p 抽象成 典例精析 利用勾股定理 可得边心距 亭子地基的面积 在rt omb中 ob 4 mb 4m o a b c d e f 解 过点o作om bc于m 2 作边心距 构造直角三角形 1 连半径 得中心角 圆内接正多边形的辅助线 1 填表 2 1 2 8 4 2 2 12 2 若正多边形的边心距与半径的比为1 2 则这个多边形的边数是 3 当堂练习 4 要用圆形铁片截出边长为4cm的正方形铁片 则选用的圆形铁片的直径最小要 cm 也就是要找这个正方形外接圆的直径 3 如图是一枚奥运会纪念币的图案 其形状近似看作为正七边形 则一个内角为 度 不取近似值 如图 m n分别是 o内接正多边形ab bc上的点 且bm cn 1 求图 中 mon 图 中 mon 图 中 mon 2 试探究 mon的度数与正n边形的边数n的关系 a b c m n m n m n o o o 90 72 120 图 图 图 正多边形 正多边形的定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025咖啡供货合同模板
- 2017年设计合同范本
- 企业现金赠与合同范本
- 2025授权销售合同范本
- 2025股票配资合同样本
- 汽车靠背广告合同范本
- 盒装水果售卖合同范本
- 展会合展合同范本
- 设备供应合同范本
- 德国卖房合同范本
- 物业消防改造服务方案(3篇)
- 海南省白沙县等两地2024-2025学年七年级下学期期末考试数学试卷(含详解)
- 产品交付流程管理办法
- 二零二五版知识产权保护与保密协议
- 电影行业人才需求与培养策略报告
- 全域土地综合整治实施方案
- 2021-2025高考数学真题分类汇编专题16圆锥曲线(选填题)16种常见考法归类(全国版)(原卷版)
- 美容中医课件模板
- 地方政府债务和隐性债务口径及认定标准
- 气排球工会活动方案
- 2025内蒙古巴彦淖尔市能源(集团)有限公司招聘48人笔试参考题库附带答案详解
评论
0/150
提交评论