小学数学2011版本小学四年级重叠问题.doc_第1页
小学数学2011版本小学四年级重叠问题.doc_第2页
小学数学2011版本小学四年级重叠问题.doc_第3页
小学数学2011版本小学四年级重叠问题.doc_第4页
小学数学2011版本小学四年级重叠问题.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新人教版小学数学三年级上册重叠问题教材版本:义务教育课程标准实验教科书 数学人教版教学内容:三年级上册第九单元“数学广角集合”第104页例1。教材分析:“重叠问题”是教材专门安排来向学生介绍一种重要的数学思想方法的,即“集合”。教材例1通过统计表的方式列出参加语文小组和数学小组的学生名单,而总人数并不是这两个小组的人数之和,从而引发学生的认知冲突。这时,教材利用直观图(即韦恩图)把这两个课外小组的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。学情分析:集合思想是数学中最基本的思想,集合理论可以说是数学的基础。从学生一开始学习数学,其实就已经在运用集合的思想了。例如,学生在学习数数时,就常常把1个人、2朵花、3枝铅笔等用一条封闭的曲线圈起来表示,在学习认识三角形等图形时,也常常把各种不同的三角形用一个圈圈起来表示。又如,学生学习过的分类思想和方法实际上就是集合理论的基础。但是,这些都只是单独的一个个集合图,而本节课所要用到的含有重复部分的集合图,学生并没有接触过。基于此,我把知识的原点定位于两个独立的集合圈,没有采用教材例1统计表的呈现方式,从两个并列的集合圈引发学生的探究,更符合学生的学情。教学目标:1、 让学生经历集合图的产生过程,理解集合图的意义,体会集合图的好处,学会利用集合的思想方法来思考问题。2、 使学生会借助直观图,利用集合的思想方法解决简单的实际问题,培养学生用不同的方法解决问题的意识。3、 利用生活事例让学生感受到数学与生活的密切联系,进一步树立学数学用数学的意识。教学要点分析:教学重点:经历集合图的产生过程,理解集合图的意义,使学生会借助直观图,利用集合的思想方法解决简单的实际问题。教学难点:经历集合图的产生过程,理解集合图的意义。教学过程:一、 设疑引入。1、 引出问题,学生思考。 教师:这张红色纸条长5厘米,这张蓝色纸条长8厘米,两张纸条其中有一部分重合了,现在长多少厘米?(学生思考一会),通过这节课的学习我们一会再来解决这个问题。2、出示通知。通知为了庆祝元旦,学校定于12月26、27日下午分别举行书法、绘画比赛。要求:每班选5名同学参加书法比赛,6名同学参加绘画比赛。 利州中学教导处 2014年12月2日师:同学们,前几天我到一所小学听课,发现学校给每个班发了一份通知,请同学们看一下:(出示通知,一生读)师:根据学校的通知要求,每个班一共要选多少人参加这两项比赛?生:(齐)11人!师:怎么算的?生:5+611(人)。师:你们同意这种做法吗?生:同意。师(稍顿):真同意?生:同意!3、查看原始数据,引出重复。师:果真是这样吗?(在算式后打问号)请看我从三()班记录的参加比赛的学生名单(课件出示两组学生名单),左边这几个同学就是参加书法比赛的那5个人,右边这几个同学就是参加绘画比赛的那6个人。书法比赛 绘画比赛周晓 于丽杨明 王强朱雨 李芳李芳陈东 杨明丁刚 张伟李芳 师:请仔细观察这份参赛的学生名单,你觉得我们刚才的答案怎么样?生:错了。师:怎么会错了呢?再仔细看看,谁来说说?生:有重复的。师:你这里的“重复”是什么意思?生1:有的同学参加了两项比赛。生2:有的同学既参加了书法比赛又参加了绘画比赛。师:谁重复了?有几个人重复了?生:杨明和李芳两个人重复了。师:因为有重复的,如果还是直接用5+6怎么样?生:不行了,那样的话杨明和李芳就算了2次了。4、揭示课题。师:生活中像这样有重复现象的问题,在数学上我们把它叫做重叠问题(板书课题:重叠问题)。二、探究新知。1、激发探究欲望,明确探究要求。师:刚才,我们通过仔细地查看三(1)班参赛的学生名单,发现有2个同学重复了,但是从这份名单中你能一下子就看出是哪2个人重复了吗?(生流露出困难的神情)有难度是吧?师:看来我这样记录不够清楚,大家想想办法,怎样重新设计一下这份名单能让我们看得更清楚一些?(课件出示要求:既要能让人很清楚地看出参加书法比赛的是哪5个人,参加绘画比赛的是哪6个人,又要能让人很明显地看出两项比赛都参加的是哪两个人。)请同学们思考一下(约10秒钟后),大家现在有办法了吗?先不急着说,请把你想到的方法在练习纸上表示出来,行吗?你可以自己画,如果感觉有些困难也可以和你小组内的同学合作完成。2、学生探究画法,师巡视,从中找出有代表性的作品准备交流。3、展示交流。师:我发现咱们班同学的画法很有创意,我从中选了几份,咱们共同来分享一下。我们不让画图的同学自己介绍,只把他们画的图让大家看,我觉得,不用自己介绍就能让别人看懂的方法那才是好方法。师(出示作品1如下图):我们来看这位同学的方法,他这样画的意思谁看懂了?书法比赛 绘画比赛 李芳 杨明 李芳 杨明 丁刚 张伟 王强 周晓陈东 朱雨 于丽生:他把李芳和杨明都放在前面了,我们就能看出是他们俩重复了。师:那你觉得这种画法比刚才我的画法怎么样?生:这样能更清楚地看出谁重复了。师(出示作品2如下图):我们再来看这位同学的方法,他这样表示你们觉得怎么样?书法比赛 绘画比赛 陈东 杨明 周晓 于丽 丁刚 张伟 杨明 王强李芳 朱雨 李芳师(出示作品3如下图):我们再来看这位同学的表示方法,大家觉得怎么样? 书法比赛 绘画比赛 丁刚 张伟 王强 周晓陈东 朱雨 于丽两项比赛 杨明 李芳师:他把参加两项比赛的同学单独放到一个圈里,更清楚了。而且重复的两个同学他只写了一遍,比刚才两边都要写的方法更简便了。可是参加书法比赛的是几个人?生:5个人。师:那为什么圈中只有3个人呀?生:下面那个圈内还有两个同学是两项比赛都参加的,所以他们也是参加书法小组的,加起来就是5个了。师:把参加书法比赛和参加绘画比赛的同学都分到了两个圈里,你觉得这样表示怎么样?清楚吗?生:我觉得还是放在一个圈里比较清楚。师:大家觉得呢?师:那我们能不能把这种方法改进一下?让参加书法比赛和参加绘画比赛的同学还在一个圈里呢?(学生思考)师请作品3的作者把参加书法比赛的那5个同学用一个圈圈出来,再把参加绘画比赛的那6个同学圈出来,此时出现了不规则的韦恩图“雏形”。书法比赛 绘画比赛 丁刚 张伟 王强 周晓陈东 朱雨 于丽杨明 李芳 师:你们觉得这样表示怎么样?4、揭示韦恩图。师:同学们的表现这么精彩,让我不禁想起了一个人,他就是英国的逻辑学家韦恩,在100多年以前,他第一个想到了这样的图,因此这种图就叫韦恩图(板书:韦恩图),也叫集合图。我们同学真了不起,都和韦恩想到一块去了。5、整理画法,完成板书。师:下面我们把同学们创造出来的韦恩图搬到黑板上来。用一个圈来表示参加书法比赛的同学,再用一个圈来表示参加绘画比赛的同学(师边说边用红笔和蓝笔画了两个交叉的椭圆),还是两个圈,不同的是这两个圈不是分开的,而是有一部分重叠在一块的,利用两个圈重叠的这一部分我们恰好可以用来表示什么?生:既参加书法比赛又参加绘画比赛的。师:有几个人?是谁?生:杨明和李芳(师画两个小长方形表示人名)。师:我们只把参加两项比赛的同学写了一遍,但是参加书法比赛的圈里有了吗?参加绘画比赛的圈里有了吗?这可真是一举(生答)两得!师:参加书法比赛的除了杨明和李芳还有几个人?(生:3个人。)应该写在哪里?生:左边。师:(在左边月牙形里画3个小长方形)同是参加书法比赛的5个同学,这3个人与这2个人有什么不同?生:这3个同学是只参加书法比赛的。这两个人不但参加了书法比赛,还参加了绘画比赛。师:那右边月牙形的这一部分表示什么?生:只参加绘画比赛的。师:有几个人?生:4 个。师:(在右边月牙形里画4个小长方形)同学们请看,我们只用了简单的两个圈,就清楚地表示出了这么多的信息,韦恩图好不好?韦恩的发明简单不简单?原来发明创造就这么简单!你们可以吗?其实我们每个人都可以有自己的创造!6、深化对韦恩图的认识。师:对于韦恩图各部分表示的意思你都明白吗?请两个同学互相说一说。(学生同伴互说)7、数形结合,解决问题。师:现在,你能不能根据韦恩图列算式来解决三()班一共有多少人参加了这两项比赛?整理算法:生1:5629(人)生2:3249(人)生3:5269(人)生4:6259(人)师:现在我们能用这么多的方法算出三(1)班参加比赛的一共是9个人,是谁帮了我们的大忙啊?生:韦恩图。师:韦恩图确实好吧?想不想用韦恩图来解决几个生活中的问题?三、综合应用。1、学生翻到书105页完成做一做例1,教师进行评讲。 2、学生做练习题2.3、拓展练习,回扣课始的问题。计算两张纸条重叠后的长度。四、总结延伸。师:同学们,这节课我们解决了很多问题,关于韦恩图和重叠问题,你还有新的问题吗?老师更喜欢那些在解决了问题之后还能提出新问题的同学!(学生沉思,似乎对所学的知识已全然领悟了,这时老师抛出一个新的问题。)师:老师这里有个问题,请看(课件出示下表),这是三年级一班参加课外小组的学生名单,为了研究的方便,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论