高考数学二轮复习 专题七 圆锥曲线 2.7.3.1 直线与圆及圆锥曲线课件 文.ppt_第1页
高考数学二轮复习 专题七 圆锥曲线 2.7.3.1 直线与圆及圆锥曲线课件 文.ppt_第2页
高考数学二轮复习 专题七 圆锥曲线 2.7.3.1 直线与圆及圆锥曲线课件 文.ppt_第3页
高考数学二轮复习 专题七 圆锥曲线 2.7.3.1 直线与圆及圆锥曲线课件 文.ppt_第4页
高考数学二轮复习 专题七 圆锥曲线 2.7.3.1 直线与圆及圆锥曲线课件 文.ppt_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

7 3 压轴大题2 直线与圆锥曲线 2 3 4 5 6 1 解析几何综合题的宏观思想 1 做好 几何条件代数化 坐标化 把几何条件用点的坐标及所设参量k表示 2 认准基本变量 常用的基本量有 1 斜率k 2 点的坐标 3 会借助中间过度量 求解解析几何题一定要考虑基本量是什么 中间量是什么 如何将中间量转化为基本量 几何条件如何坐标化 7 2 求解圆锥曲线标准方程的方法是 先定型 后计算 1 定型 就是指定类型以及圆锥曲线的焦点位置 从而设出标准方程 2 计算 一般利用待定系数法求出方程中的a2 b2或p 另外 当焦点位置无法确定时 椭圆常设为mx2 ny2 1 m 0 n 0 双曲线常设为mx2 ny2 1 mn 0 抛物线常设为y2 2ax或x2 2ay a 0 3 椭圆与双曲线的方程形式上可统一为ax2 by2 1 其中a b是不相等的常数 当a b 0时 表示焦点在y轴上的椭圆 当b a 0时 表示焦点在x轴上的椭圆 当ab 0时 表示双曲线 8 3 在椭圆焦点三角形pf1f2中 f1pf2 4 直线与圆锥曲线位置关系与 的关系设直线l ax by c 0 圆锥曲线c f x y 0 由消去y 或消去x 得ax2 bx c 0 若a 0 b2 4ac 则 0 相交 0 相离 0 相切 若a 0 得到一个一次方程 则 c为双曲线时 则l与双曲线的渐近线平行 c为抛物线时 则l与抛物线的对称轴平行 9 5 直线与圆锥曲线相交时的弦长 1 直线方程的设法 已知直线过定点 x0 y0 设直线方程为y y0 k x x0 若已知直线的纵截距为 0 b 设直线方程为y kx b 若已知直线的横截距为 a 0 设直线方程为x ty a 2 弦长公式 斜率为k的直线与圆锥曲线交于点a x1 y1 b x2 y2 时 10 11 12 2 如下图 直线ab过焦点f 2 amf mab 2 bnf nba 360 又 mab nba 180 amf bnf 90 mfn 90 得结论 mfn 90 点f在以mn为直径的圆上 13 3 若e为线段mn的中点 点g为线段ab的中点 则 eg ab 得结论 点e在以ab为直径的圆上 aeb 90 结论 连接an交x轴于点t 则t为原点o 证明如下 8 定值 定点问题必然是在变化中所表现出来的不变的量 那么就可以用变化的量表示问题中的直线方程 数量积 比例关系等 这些直线方程 数量积 比例关系不受变化的量所影响的一个点 就是要求的定点 解决这类问题的关键就是引进参数表示直线方程 数量积 比例关系等 根据等式的恒成立 数式变换等寻找不受参数影响的量 14 7 3 1直线与圆及圆锥曲线 16 考向一 考向二 考向三 求轨迹方程例1 1 已知过点a 0 2 的动圆恒与x轴相切 设切点为b ac是该圆的直径 求点c轨迹e的方程 2 已知圆m x 1 2 y2 1 圆n x 1 2 y2 9 动圆p与圆m外切并且与圆n内切 圆心p的轨迹为曲线c 求c的方程 17 考向一 考向二 考向三 18 考向一 考向二 考向三 解题心得1 如果动点运动的条件就是一些几何量的等量关系 设出动点坐标 直接利用等量关系建立x y之间的关系f x y 0 就得到轨迹方程 2 若动点的轨迹符合某已知曲线的定义 可直接设出相应的曲线方程 用待定系数法或题中所给几何条件确定相应系数 从而求出轨迹方程 19 考向一 考向二 考向三 对点训练1 1 已知点p 2 2 圆c x2 y2 8y 0 过点p的动直线l与圆c交于a b两点 线段ab的中点为m o为坐标原点 求m的轨迹方程 2 定圆m x 2 y2 16 动圆n过点f 0 且与圆m相切 记圆心n的轨迹为e 求轨迹e的方程 20 考向一 考向二 考向三 21 考向一 考向二 考向三 例2 2018山东潍坊三模 文20节选 在平面直角坐标系xoy中 点a在x轴上 点b在y轴上 且ab 2 延长ba至p 且a为pb的中点 记点p的轨迹为曲线c 1 求曲线c的方程 2 略 22 考向一 考向二 考向三 解题心得如果动点p的运动是由另外某一点q的运动引发的 而该点坐标满足某已知曲线方程 则可以设出p x y 用 x y 表示出相关点q的坐标 然后把q的坐标代入已知曲线方程 即可得到动点p的轨迹方程 23 考向一 考向二 考向三 24 考向一 考向二 考向三 25 考向一 考向二 考向三 26 考向一 考向二 考向三 直线和圆的综合例3 2018全国卷2 文20 设抛物线c y2 4x的焦点为f 过f且斜率为k k 0 的直线l与c交于a b两点 ab 8 1 求l的方程 2 求过点a b且与c的准线相切的圆的方程 27 考向一 考向二 考向三 28 考向一 考向二 考向三 29 考向一 考向二 考向三 解题心得处理直线与圆的综合问题 要特别注意圆心 半径及平面几何知识的应用 如经常用到弦心距 半径 弦长的一半构成的直角三角形 利用圆的一些特殊几何性质解题 往往使问题简化 30 考向一 考向二 考向三 对点训练3 2018山东潍坊三模 文20改编 已知直线l y kx m与圆o x2 y2 2相切 且l与椭圆c 交于m n两点 q为椭圆c上一点 当四边形omqn为平行四边形时 求k的值 31 考向一 考向二 考向三 32 考向一 考向二 考向三 直线与圆锥曲线的综合 1 求椭圆的方程 2 设直线l y kx k 0 与椭圆交于p q两点 l与直线ab交于点m 且点p m均在第四象限 若 bpm的面积是 bpq面积的2倍 求k的值 33 考向一 考向二 考向三 34 考向一 考向二 考向三 解题心得在已知直线与圆锥曲线相交求某个量的值的题目中 一般需要将题目中的已知条件转化成交点坐标之间的关系 通过联立直线与曲线的方程 解出点的坐标 从而构成关于所求量的方程 解方程得之 35 考向一 考向二 考向三 对点训练4在平面直角坐标系xoy中 已知椭圆c1 a b 0 的左焦点为f1 1 0 且点p 0 1 在c

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论