




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
线性代数计算行列式的若干基本方法计算行列式并无固定的方法其实,同一个行列式可以有多种不同的方法进行计算因此,除了掌握好行列式的基本性质外,针对行列式的结构特点,选取恰当的方法,才能较快地计算行列式这里我们将介绍一些常用的方法1.化为已经熟悉的行列式来计算我们已经知道上(下)三角行列式、范德蒙行列式以及形如,的行列式的结果如果利用行列式的性质可把给定的行列式化为以上这些形式,则不难求出所给行列式的值例1 计算行列式解 这是一个阶数不高的数值行列式,通常将它化为上(下)三角行列式来计算例2 计算n阶行列式解 这个行列式每一列的元素,除了主对角线上的外,都是相同的,且各列的结构相似,因此n列之和全同将第2,3,n列都加到第一列上,就可以提出公因子且使第一列的元素全是1例3 计算阶行列式其中解 这个行列式的每一行元素的形状都是,0,1,2,n即按降幂排列,按升幂排列,且次数之和都是n,又因,若在第i行(1,2,n)提出公因子,则D可化为一个转置的范德蒙行列式,即2.降阶法当一个行列式的某一行(列)的元素有比较多0时,利用行列式的依行(列)展开定理将它化为较低阶的行列式来计算例4 计算n(n2)阶行列式解 按第一行展开,得再将上式等号右边的第二个行列式按第一列展开,则可得到3.拆项法拆项法是将给定的行列式的某一行(列)的元素都写成同样多的和,然后利用性质6将它表成一些比较容易计算的行列式的和例5 计算n(n2)阶行列式解 将按第一列拆成两个行列式的和,即再将上式等号右端的第一个行列式第i列(,3,n)减去第一列的i倍;第二个行列式提出第一列的公因子,则可得到当n3时,当时,例6 计算n阶行列式,()解 将第一行的元素都表成两项的和,使变成两个行列式的和,即将等号右端的第一个行列式按第一行展开,得: 这里是一个与有相同结构的阶行列式;将第二个行列式的第一行加到其余各行,得:于是有 (1)另一方面,如果将的第一行元素用另一方式表成两项之和:仿上可得: (2)将(1)式两边乘以,(2)式两边乘以,然后相减以消去,得:4.加边法在给定的行列式中添上一行和一列,得加边行列式,建立新的行列式与原行列式的联系,以求得结果例7 计算n(n2)阶行列式,其中解 先将添上一行一列,变成下面的阶行列式:显然,将的第一行乘以后加到其余各行,得因,将上面这个行列式第一列加第i(,)列的倍,得:故5.递推法递推法是根据行列式的构造特点,利用行列式的性质,将给定的行列式表成若干个具有相同形状以及一些容易计算的,但阶数较低的行列式之和,然后利用这种关系式计算原行列式的值,最后再用数学归纳法证明所得到的结果正确这是一种颇常使用的方法,在计算范德蒙行列式时已建立过递推关系式,例6也利用了递推关系式使用递推法计算行列式,一般分三个步骤,首先找出递推关系式,然后算出结果,最后用数学归纳法证明结果正确例8 计算n阶行列式解 首先建立递推关系式按第一列展开,得:这里与有相同的结构,但阶数是的行列式现在,利用递推关系式计算结果对此,只需反复进行代换,得:因,故最后,用数学归纳法证明这样得到的结果是正确的当时,显然成立设对阶的情形结果正确,往证对n阶的情形也正确由可知,对n阶的行列式结果也成立根据归纳法原理,对任意的正整数n,结论成立例9 证明n阶行列式证明 按第一列展开,得其中,等号右边的第一个行列式是与有相同结构但阶数为的行列式,记作;第二个行列式,若将它按第一列展开就得到一个也与有相同结构但阶数为的行列式,记作这样,就有递推关系式:因为已将原行列式的结果给出,我们可根据得到的递推关系式来证明这个结果是正确的当时,结论正确当时,结论正确设对的情形结论正确,往
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州黄平县中医医院医共体单位纸房乡卫生院招聘2名护理人员模拟试卷参考答案详解
- 2025湖南株洲市工业中等专业学校招聘第一批高层次人才13人模拟试卷及答案详解参考
- 2025湖北神农架优抚医院招聘医疗卫生专业技术人员模拟试卷附答案详解(模拟题)
- 2025江苏徐州选聘徐州泉山经济开发区投资发展有限公司总经理(四)考前自测高频考点模拟试题附答案详解
- 2025安徽蚌埠市教育局局属中学高层次人才招聘50人模拟试卷附答案详解(突破训练)
- 2025年上半年浙江宏为电力建设有限公司社招(若干人)笔试题库历年考点版附带答案详解
- 2025河南驻马店市正阳县县管国有企业招聘20人(第二批)考前自测高频考点模拟试题及答案详解(必刷)
- 2025广东海洋大学招聘辅导员32人模拟试卷完整答案详解
- 2025内蒙古赤峰新正电工技术服务有限公司面向社会招聘69人模拟试卷附答案详解(黄金题型)
- 2025广东依顿电子科技股份有限公司招聘工艺工程师岗人员考前自测高频考点模拟试题参考答案详解
- 乌鲁木齐家乡介绍旅游攻略
- (高清版)JTGT 3365-01-2020 公路斜拉桥设计规范
- 专业技术人员年度考核情况登记表
- GB/T 33285.2-2024皮革和毛皮烷基酚及烷基酚聚氧乙烯醚的测定第2部分:间接法
- 2023年贵州专升本英语真题试卷(完整版)
- 医院护理培训课件:《成人早期预警评分系统介绍》
- 2023保密知识测试题库含答案
- 危险化学品安全作业(氧化工艺)考试题库(含答案)
- 中国农业银行笔试题库(含答案)
- GA 1808-2022军工单位反恐怖防范要求
- 工程建设项目绿色建造施工水平评价申请表
评论
0/150
提交评论