




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
复习与交流 第19章四边形黄梅娟 教学目标 知识与技能: 回顾本单元知识,领会四边形以及特殊四边形的概念、性质、判定,以及三角形中位线定理,发展合情推理能力 过程与方法: 经历四边形基本性质,常见判定方法的复习交流过程,使学生学会“合乎逻辑地思考”,建立知识体系,获得一定的技能基础 情感态度与价值观: 让学生理解平面几何观念的基本途径是多种多样的,感知和体验几何图形的现实意义,体验二维空间相互转换关系 重难点、关键 重点:理解和掌握几种常见特殊四边形的性质、判定 难点:发展合情推理和初步的演绎推理能力 关键:运用观察、比较、归纳、类比即通过合情推理提出猜想,再通过演绎推理证明 教学准备 教师准备:投影仪,制作投影片 学法解析 1认知起点:在学完四边形、特殊四边形的内容后进行小结 2知识线索:本章知识是在相交线、平行线和三角形知识的基础上发展起来的,基本上按四边形、特殊四边形及其性质与判定思路展开知识 3学习方式:合作、交流、探究、归纳 教学过程 一、回顾交流,系统跃进1.四边形的从属关系2.知识结构图 【课堂演练】1.下列命题正确的是( ) A.对角线互相平分的四边形是菱形 B.对角线互相平分且相等的四边形是菱形 C.对角线互相垂直的四边形是菱形 D.对角线互相垂直平分的四边形是菱形2.正方形具有而矩形不一定具有的性质是( ) A.对角线互相平分 B.四条边都相等 C.四个角都是直角 D.对角线相等3. 甲乙丙丁四位同学到木工厂参观时,他们各自做了如下检测: A.甲量得窗框两组对边分别相等 B.乙量得窗框一组邻边相等 C.丙量得窗框的两条对角线长相等 D.丁量得窗框的两组对边相等且两条对角线也相等 检测后,他们都说窗框是矩形你认为最有说服力的是( ) 3几种特殊四边形的性质名称 定 义 性 质判定 对称性 平行四边形两组对边分别平行的四边形叫做平行四边形。对边平行;对边相等;对角相等;邻角互补;对角线互相平分;是中心对称图形。定义;两组对边分别相等的四边形;一组对边平行且相等的四边形;两组对角分别相等的四边形;对角线互相平分的四边形。中心对称图形矩形有一个角是直角的平行四边形叫做矩形除具有平行四边形的性质外,还有:四个角都是直角;对角线相等;既是中心对称图形又是轴对称图形。有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形;定义。 轴对称图形、中心对称图形菱形有一组邻边相等的平行四边形叫做菱形。除具有平行四边形的性质外,还有:四条边相等;对角线互相垂直,且每一条对角线平分一组对角;既是中心对称图形又是轴对称图形。四条边相等的四边形是菱形;对角线垂直的平行四边形是菱形;定义。 轴对称图形、中心对称图形正方形有一组邻边相等且有一个角是直角的平行四边形叫做正方形具有平行四边形、矩形、菱形的性质:四个角是直角,四条边相等;对角线相等,互相垂直平分,每一条对角线平分一组对角;既是中心对称图形又是轴对称图形。有一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形;定义。 轴对称图形、中心对称图形4.其它重要定理(1)两条平行线之间的垂线段处处相等(2)直角三角形斜边上的中线等于斜边的一半。(3)三角形中位线平行且等于底边的一半;(4)梯边形中位线平行且等于上下底边和的一半(5)中点四边形:顺次连接四边形各边中点,所得的图形是平行四边形.顺次连接对角线 相等的四边形的各边中点所得的图形是矩形.顺次连接对角线互相垂直的四边形的各边中点所得的四边形是菱形.顺次连接对角线 互相垂直且相等的四边形的各边中点所得的四边形是正方形 【活动方略】 教师活动:操作投影仪,指导学生以知识结构为主线,系统复习:1概念,2性质,3判定,4其他性质;然后组织学生分成四人小组交流自己的小结 【设计意图】采用师生互动,发挥学生主动复习的意识,提高知识层面 二、精析例题,优化思维 4.如图,矩形ABCD的对角线AC、BD交于点O,过点D作DPOC,且 DP=OC,连结CP,试判断四边形CODP的形状ABDCOP思路点拨:解:四边形CODP是菱形 DPOC, DP=OC, 四边形CODP是平行四边形四边形ABCD是矩形 , CO=DO 四边形CODP是菱形 PCDOBA图二(1).如果题目中的矩形变为菱形(图一),结论变为什么?图一AODPBC(2).如果题目中的矩形变为正方形(图二),结论又变为什么? 学生活动:先独立完成演练题,然后再踊跃上台演示,并归纳小结知识点,和解题方法 教师活动:关注学生的思维,请一些学生上台演示,然后与学生一起纠正 5.已知:如图,E、F为ABCD的对角线AC所在直线上的两点,AE=CF,求证:BE=DF(用两种证法) 思路点拨:证法1:运用ABCD的性质证明ABECDF的条件,从而证出BE=DF证法2:连结DE、BF、BD,设BD与AC相交于O,去证明四边形BFDE是平行四边形即可 学生活动:先独立完成演练题,然后以此为素材进行思维归纳、交流 教师活动:操作投影仪,显示演练题,巡视、引导学生进行演练,关注“学困生”请部分学生上台演练,然后纠正 评析:在有关特殊四边形的问题中,通常转化为三角形或直接运用特殊四边形自身性质来解决思路不唯一,但应选择较好的方法 6.以ABC的边AB、AC为边作等边ABD和等边 ACE,四边形ADFE是平行四边形BCAEFD6060 当BAC等于 时,四边形ADFE是矩形; 当BAC等于 时,平行四边形ADFE不存在; 当ABC分别满足什么条件时,平行四边形是菱形、正方形7. 如图正方形ABCD边长为对角线交于点O,O又是另一个正方形OEFG的一个顶点,若正方形OEFG绕点O旋转在旋转的过程中.探究一:若正方形OEFG与正方形ABCD两边分别相交于M N试判断线段AM于BN之间的关系.探究二:两个正方形重叠部分的面积是否会发生变化?并说明理由。探究三:若正方形OEFG继续旋转时,AM 与BN之间的关系是否还成立?探究四: 如图 有两个大小不等的两个正方形,其中小正方形的面积是大正方形面积的一半,若阴影部分的面积为3,则小正方形的边长为多少?APBDQC8、已知:如图,在直角梯形ABCD中,B90,ADBC,AD24cm,BC26cm,动点P从A点开始沿AD边向D以1cm/秒的速度运动,动点Q从C点开始沿CB边向B以3cm/秒的速度运动,P、Q分别从A、C同时出发,当其一点到端点时,另一点也随之停止运动,设运动时间为t秒,t分别为何值时,四边形PQCD是平行四边形?等腰梯形?解(1)因为ADBC,所以,只要QCPD,则四边形PQCD就是平行四边形,此时有3t=24t解得t6(秒)当t6秒时,四边形PQCD平行四边形。 (2)同理,只要PQCD,PDQC,四边形PQCD为等腰梯形。过P、D分别作BC的垂线交BC于E、F,则由等腰梯形的性质可知,EFPD,QEFC26242,所以24t=3t-4 ,解得t7所以当t7秒时,四边形PQCD是等腰梯形。 学生活动:先独立完成上面两个演练题,再踊跃上台演示与同伴交流,归纳,小结有关知识点 教师活动:投影显示“演练题”,巡视、引导,激发学生的求知欲,关注“学困生”;请部分学生上台演示 【设计意图】采用系统理论与练习相结合的方法提高学生的实际应用能力 三、随堂练习,巩固深化 1课本 P133 复习题19 12,14 【探研时空】 课本P133 复习题 15 四、布置作业,专题突破 1课本P132 复习题 6,7,8,9,10,11 2选用课时作业优化设计五、课后反思课时作业优化设计 【驻足“双基”】 1菱形相邻两边中点连线的长分别为7cm和4cm,则菱形的面积为_ 2平行四边形有一个角的平分线和一边相交,且把这边分成3cm和5cm两部分,则这平行四边形周长为_ 3矩形一条长边的中点与另一条长边的两端的连线互相垂直,且周长是36cm,则它的长和宽分别是_和_,对角线的长是_ 4一个正方形和一个等腰三角形有相等的周长,等腰三角形有二边长为5.6cm和13.2cm,则这个正方形面积为( ) A24cm2 B36cm2 C48cm2 D64cm2 5直角梯形中,斜腰与底的夹角为60,若这腰与上底的长都是8cm,则这梯形的周长是( ) A24+4 B26+4 C28+4 D32+4 【聚焦“中考”】 6(2003年海南省中考题)如图,在ABC中,ACB=90,BC的垂直平分线DE交BC于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度出口贸易海运物流代理合同
- 2025年度校园学术活动场地租赁服务协议书
- 2025茶楼员工绩效考核与激励合同
- 2025版社区居民委会节假日安保服务及应急预案合同
- 2025年度圆通快递快递业务数据处理保密合同
- 2025年房地产项目智能家居销售代理合作协议
- 2025年度绿色环保市场摊位经营权转让合同范本下载
- 2025电子商务合同监管与消费者权益保护研究
- 2025版围蔽工程施工现场文明施工管理协议
- 2025版碎石运输与智能运输调度服务合同
- 2025年关于村支部书记的面试题及答案
- 2025湖南非全日制用工劳动合同范本2
- 2025年农村商业银行招聘笔试真题及答案(可下载)
- 熏蒸药品管理办法
- 收银系统操作培训
- 卓越幼儿园教师健康专题培训课件
- 个股期权培训课件
- 临时起搏器安置术的护理
- 小学美术教育读书分享
- 肺结核痰菌阴转评估体系构建
- 中国国家地理在线课件
评论
0/150
提交评论