【中考12年】福建省福州市2001中考数学试题分类解析 专题4 图形的变换.doc_第1页
【中考12年】福建省福州市2001中考数学试题分类解析 专题4 图形的变换.doc_第2页
【中考12年】福建省福州市2001中考数学试题分类解析 专题4 图形的变换.doc_第3页
【中考12年】福建省福州市2001中考数学试题分类解析 专题4 图形的变换.doc_第4页
【中考12年】福建省福州市2001中考数学试题分类解析 专题4 图形的变换.doc_第5页
免费预览已结束,剩余24页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考12年福州市2001-2012年中考数学试题分类解析专题4:图形的变换选择题1. (2001年福建福州4分)某校计划在校园内修建一座周长为12米的花坛,同学们设计出正三角形、正方形和圆共三种图案,其中使花坛面积最大的图案是【】 a. 正三角形b. 正方形 c. 圆d. 不能确定【答案】c。【考点】圆的认识。【分析】根据周长分别求得正三角形,正方形,圆的面积,从而比较可得到面积最大的是什么形状:当设计成正三角形,则边长是4米,高是米,则面积是平方米;当设计成正方形时,边长是3米,则面积是9平方米;当设计成圆时,半径是米,则面积是平方米。这三个数中最大,使花坛面积最大的图案是圆。故选c。2. (2004年福建福州4分)下列图形中能够用来作平面镶嵌的是【 】a、正八边形b、正七边形 c、正六边形d、正五边形【答案】c。【考点】平面镶嵌(密铺),多边形内角和定理。【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角。因此,a、正八边形的每个内角为:1803608=135,不能整除360,不能密铺;b、正七边形每个内角为:1803607=9007,不能整除360,不能密铺;c、正六边形的每个内角是120,能整除360,能密铺;d、正五边形的每个内角是108,不能整除360,不能密铺。故选c。3. (2005年福建福州大纲卷3分)如图,小亮拿一张矩形纸图(1),沿虚线对折一次得图(2),下将对角两顶点重合折叠得图(3),按图(4)沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形分别是【 】a都是等腰梯形 b都是等边三角形c两个直角三角形,一个等腰三角形 d两个直角三角形,一个等腰梯形5. (2007年福建福州3分)只用下列一种正多边形不能镶嵌成平面图案的是【 】a正三角形 b正方形c正五边形d正六边形【答案】c。【考点】平面镶嵌(密铺),多边形内角和定理。【分析】分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360即可作出判断:a正三角形的一个内角度数为180360,是360的约数,能镶嵌平面,不符合题意;b正方形的一个内角度数为360490,是360的约数,能镶嵌平面,不符合题意;c正五边形的一个内角度数为31805108,不是360的约数,不能镶嵌平面,符合题意;d正六边形的一个内角度数为41806120,是360的约数,能镶嵌平面,不符合题意。故选c。8. (2009年福建福州4分)如图,正五边形fghmn是由正五边形abcde经过位似变换得到的,若ab:fg=2:3,则下列结论正确的是【】.a2de=3mn, b3de=2mn, c 3a=2f d2a=3f9. (2009年福建福州4分)如图,是以等边三角形abc一边ab为半径的四分之一圆周, p为上任意一点,若ac=5,则四边形acbp周长的最大值是【】.a 15 b 20 c15+ d15+【答案】c。【考点】动点问题,圆心角、弧、弦的关系,勾股定理。【分析】由于ac和bc值固定,点p在弧ad上,而b是圆心,所以pb的长也是定值,因此,只要ap的长为最大值。当p的运动到d点时,ap最长为5。四边形acbp周长的最大值是53+5=15+5。故选c。10. (2010年福建福州4分)下面四个立体图形中,主视图是三角形的是【 】abcd【答案】c。【考点】简单几何体的三视图。【分析】找到从正面看所得到的图形为三角形即可:a、主视图为长方形,不符合题意;b、主视图为圆,不符合题意;c、主视图为三角形,符合题意;d、主视图为长方形,不符合题意。故选c。12. (2011年福建福州4分)如图,在长方形网格中,每个小长方形的长为2,宽为1,a、b两点在网格格点上,若点c也在网格格点上,以a、b、c为顶点的三角形面积为2,则满足条件的点c个数是【 】 a、2b、3 c、4d、5【答案】c。【考点】格点问题,三角形的面积。【分析】根据三角形abc的面积为2,可知三角形的底边长为4,高为1,或者底边为2,高为2,可通过在正方形网格中画图得出结果,c点所有的情况如图所示:故选c。二、填空题1. (2002年福建福州3分)如图:四边形abcd是正方形,曲线da1b1c1d1叫做“正方形的渐开线”,其中的圆心依次按a、b、c、d循环,它依次连接取ab1,则曲线的长是 (结果保留)【答案】。【考点】新定义,正方形的性质。【分析】根据“正方形的渐开线”的定义,分别为半径为1,2,7,8的圆弧,因此,曲线da1b1c2d2的长是。2. (2004年福建福州3分)图中是一幅“苹果图”,第一行有1个苹果,第二行有2个,第三行有4个,第四行有8个,你是否发现苹果的排列规律?猜猜看,第六行有 个苹果、第十行有 个(可用乘方形式表示)3. (2005年福建福州大纲卷4分)如图,在边长为a的正方形中剪去一个边长为b的小正方形(ab),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式 【答案】。【考点】平方差公式的几何背景。【分析】左图中阴影部分的面积是a2b2,右图中梯形的面积是(2a+2b)(ab)=(a+b)(ab),根据面积相等得:。4. (2006年福建福州课标卷4分)如图,正方形abcd边长为3,以直线ab为轴,将正方形旋转一周所得圆柱的主视图(正视图)的周长是 【答案】18。【考点】正方形的性质,几何体的三视图。【分析】将正方形旋转一周,所得圆柱的底面半径和高都是3,则圆柱的主视图(正视图)是边长为6和3的矩形。所以圆柱的主视图(正视图)的周长是。6. (2011年福建福州4分)以数轴上的原点o为圆心,3为半径的扇形中,圆心角aob=90,另一个扇形是以点p为圆心,5为半径,圆心角cpd=60,点p在数轴上表示实数,如图如果两个扇形的圆弧部分(和)相交,那么实数的取值范围是 【答案】42。【考点】圆与圆的位置关系,勾股定理,实数与数轴。【分析】两扇形的圆弧相交,实数的取值范围界于d、a两点重合和与交于点b时的范围内。当a、d两点重合时,如图po=pdoa=53=2,此时p点坐标为;当与交于点b时,如图连接pb,则由勾股定理,得po=,此时p点坐标为。则实数的取值范围是42。三、解答题1. (2004年福建福州13分)如图,在边长为4的正方形abcd中,e是dc中点,点f在bc边上,且cf=1,在aef中作正方形a1b1c1d1,使边a1b1在af上,其余两个顶点c1、d1分别在ef和ae上(1)请直接写出图中两直角边之比等于1:2的三个直角三角形(不另添加字母及辅助线);(2)求af的长及正方形a1b1c1d1的边长;(3)在(2)的条件下,取出aef,将ec1d1沿直线c1d1、c1fb1沿直线c1b1分别向正方形a1b1c1d1内折叠,求小正方形a1b1c1d1未被两个折叠三角覆盖的四边形面积【答案】解:(1)rtcef、rtade、rtaef、rtaa1d1、rted1c1、rtc1b1f(写出其中三个即可)。(2)正方形abcd的边长为4,cf=1,bf=3。af= =5。过e作emaf,垂足为m,交d1c1于n,则em=2。四边形a1b1c1d1是正方形,d1c1af。d1c1eafe。设正方形a1b1c1d1的边长为x,则。解得x=。正方形a1b1c1d1的边长为。(3)d1c1=,en=2。,c1b1=,b1f=。如图,1=2,1+4=90,2+3=90,3=4。e1点在c1f1上。又, 。【考点】翻折变换(折叠问题),勾股定理,正方形的性质,相似三角形的判定和性质。(3)如何说明ec1d1沿直线c1d1、c1fb1沿直线c1b1分别向正方形a1b1c1d1内折叠以后两个三角形的交界处既不重叠又没有空隙是一个难点,比较容易忽略,值得引起重视下面给出一种另解供参考:由e1c1d1、c1b1f1分别由ec1d1、c1fb1折叠而成,可得3=4、1=2,因为正方形a1b1c1d1中有d1c1b1=90,所以4+1=18090=90,即2+3=90=d1c1b1,从而c1e1与c1f1重合在一条直线上(或三点c1、e1、f1在一条直线上)。2. (2005年福建福州大纲卷13分)已知,如图,在直角梯形abcd中,adbc,bc=5cm,cd=6cm,dcb=60,abc=900等边三角形mpn(n为不动点)的边长为acm,边mn和直角梯形abcd的底边bc都在直线l上,nc=8cm将直角梯形abcd向左翻折180,翻折一次得图形,翻折二次得图形,如此翻折下去(1)将直角梯形abcd向左翻折二次,如果此时等边三角形的边长a2cm,这时两图形重叠部分的面积是多少?(2)将直角梯形abcd向左翻折三次,如果第三次翻折得到的直角梯形与等边三角形重叠部分的面积等于直角梯形abcd的面积,这时等边三角形的边长a至少应为多少?(3)将直角梯形abcd向左翻折三次,如果第三次翻折得到的直角梯形与等边三角形重叠部分的面积等于直角梯形abcd的面积的一半,这时等边三角形的边长应为多少?【分析】(1)因为dcb=60,pmn也是等边三角形,这样容易知道eqn也是等边三角形,易求qn=2,所以求两图形重叠部分的面积就可以求出。(2)如图,等边三角形的边长mn=qn+hq+mh,其中只要求mh,利用已知解rtkhm即可。 (3)若现在重叠部分的面积等于直角梯形abcd的面积的一半,如图首先判断mq的大小,梯形abcd的面积可以直接求出;然后设mq为x,根据已知条件可以得到关于x的方程,解方程就可以得到题目的结果。3. (2006年福建福州大纲卷8分)一串有趣的图案按一定规律排列,请仔细观察,按此规律画出的第10个图案是 ;在前16个图案中有 个“”;第2008个图案是 .【答案】解:;5;。【考点】探索规律题(图形的变化类)。【分析】该图案是循环类,3个一循环,因此, 103=31,第10个图案与第1个图案相同,是。 163=51,在前16个图案中有5个。 20083=6691,第2008个图案与第1个图案相同,是。4. (2006年福建福州大纲卷8分)一串有趣的图案按一定规律排列,请仔细观察,按此规5. (2007年福建福州12分)如图,直线acbd,连接ab,直线ac,bd及线段ab把平面分成、四个部分,规定:线上各点不属于任何部分当动点p落在某个部分时,连接pa,pb,构成pac,apb,pbd三个角(提示:有公共端点的两条重合的射线所组成的角是0角)(1)当动点p落在第部分时,求证:apb=pac+pbd;(2)当动点p落在第部分时,apb=pac+pbd是否成立?(直接回答成立或不成立)(3)当动点p在第部分时,全面探究pac,apb,pbd之间的关系,并写出动点p的具体位置和相应的结论选择其中一种结论加以证明 选择(a) 证明:如图a,设bp与ac相交于点m, acbd,pmc=pbd 。又pmc=pamapm ,pbd=pacapb。【考点】平行的性质,三角形外角性质,分类思想的应用。【分析】(1)延长bp交直线ac于点e,由平行和三角形外角性质可证。 (2)当动点p落在第部分时,延长bp交直线ac于点f,acbd,pfa=1800pbd。apb=pafpfa , paf=1800pac,apb =1800pac1800pbd=3600(pacpbd)。apb =pacpbd不成立。(3)分动点p在射线ba的右侧、在射线ba上、在射线ba的左侧三种情况讨论。6. (2008年福建福州13分)如图,已知abc是边长为6cm的等边三角形,动点p、q同时从a、b两点出发,分别沿ab、bc匀速运动,其中点p运动的速度是1cm/s,点q运动的速度是2cm/s,当点q到达点c时,p、q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t=2时,判断bpq的形状,并说明理由;(2)设bpq的面积为s(cm2),求s与t的函数关系式;(3)作qrba交ac于点r,连接pr,当t为何值时,aprprq qr=rc=qc=62t。7. (2009年福建福州12分)如图,等边abc边长为4,e是边bc上动点,ehac于h,过e作efac,交线段ab于点f,在线段ac上取点p,使pe=eb设ec=x(0x2)(1)请直接写出图中与线段ef相等的两条线段(不再另外添加辅助线);(2)q是线段ac上的动点,当四边形efpq是平行四边形时,求平行四边形efpq的面积(用含x的代数式表示);(3)当(2)中的平行四边形efpq面积最大值时,以e为圆心,r为半径作圆,根据e与此时平行四边形efpq四条边交点的总个数,求相应的r的取值范围【答案】解:(1)be、pe、bf三条线段中任选两条。 (2)在rtche中,che90,c60,ec=x,eh。又pq=ef=be=4x,。(3),且0x2,当x2时,有最大值。此时e、f、p分别为abc三边bc、ab、ac的中点,且点c、 点q重合,平行四边形efpq是菱形。过e点作edfp于d,edeh。当e与四条边交点的总个数是2个时, ;当e与四条边交点的总个数是4个时,r; 当e与四条边交点的总个数是6个时,;当e与四条边交点的总个数是3个时,r2时;当e与四条边交点的总个数是0个时,r2时。【考点】动点问题,平行的性质,等边三角形的性质,锐角三角函数定义,特殊角的三角函数值,平行四边形的性质,二次函数最值,菱形的判定和性质,直线与圆的位置关系,分类思想的应用。【分析】(1)由已知和平行和等边三角形的性质,知be=pe=bf,三条线段中任选两条即可。 (2)用x表示出eh和ef的长即可求出平行四边形efpq的面积。(3)应用二次函数最值求出平行四边形efpq面积最大值时点e的位置,判断出四边形efpq是菱形,从而分别得出结论。8. (2010年福建福州13分)如图,在abc中,c=45,bc=10,高ad=8,矩形efpq的一边qp在边上,e、f两点分别在ab、ac上,ad交ef于点h(1)求证:;(2)设ef=x,当x为何值时,矩形efpq的面积最大?并求其最大值;(3)当矩形efpq的面积最大时,该矩形efpq以每秒1个单位的速度沿射线qc匀速运动(当点q与点c重合时停止运动),设运动时间为t秒,矩形efpq与abc重叠部分的面积为s,求s与t的函数关系式【答案】解:(1)证明:四边形efpq是矩形,efqp。aefabc。又adbc,ahef。(2)由(1)得,。eq=hd=adah=8。0,058,当x=5时,s矩形efpq有最大值,最大值为20。(3)如图1,由(2)得ef=5,eq=4,c=45,npc是等腰直角三角形。pc=fp=eq=4,qc=qp+pc=9。分三种情况讨论:如图2,当0t4时,设ef、pf分别交ac于点m、n,则mfn是等腰直角三角形。fn=mf=t。如图3,当4t5时,则me=5t,qc=9t,。如图4,当5t9时,设eq交ac于点k,则kq=qc=9t。综上所述:s与t的函数关系式为:s=。【考点】矩形的性质,相似三角形的判定和性质,二次函数的最值,等腰直角三角形的判定和性质,分类思想的应用。所以本题要分三种情况讨论:当0t4时,重合部分的面积是矩形efpq与等腰rtfmn(设ac与fe、fp的交点为m、n)的面积差,fm的长即为梯形移动的距离,由此可得到s、t的函数关系式;当4t5时,重合部分是个梯形,可用t表示出梯形的上下底,进而由梯形的面积公式求得s、t的函数关系式;当5t9时,重合部分是个等腰直角三角形,其直角边的长易求得,即可得出此时s、t的函数关系式。9. (2011年福建福州12分)已知,矩形abcd中,ab=4cm,bc=8cm,ac的垂直平分线ef分别交ad、bc于点e、f,垂足为o(1)如图1,连接af、ce求证四边形afce为菱形,并求af的长;(2)如图2,动点p、q分别从a、c两点同时出发,沿afb和cde各边匀速运动一周即点p自afba停止,点q自cdec停止在运动过程中,已知点p的速度为每秒5cm,点q的速度为每秒4cm,运动时间为t秒,当a、c、p、q四点为顶点的四边形是平行四边形时,求t的值若点p、q的运动路程分别为、(单位:,),,已知a、c、p、q四点为顶点的四边形是平行四边形,求与满足的数量关系式【答案】解:(1)证明:四边形abcd是矩形,adbc。cad=acb,由题意得,以a、c、p、q四点为顶点的四边形是平行四边形时,点p、q在互相平行的对应边上分三种情况:i)如图1,当p点在af上、q点在ce上时,ap=cq,即,得;ii)如图2,当p点在bf上、q点在de上时,aq=cp,即,得;iii)如图3,当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论