




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三节定积分换元积分法与分部积分法教学目的:使学生熟练掌握定积分换元积分法与分部积分法教学重点:定积分换元积分法一、换元积分法 定理 假设函数f(x)在区间a, b上连续, 函数x=j(t)满足条件: (1)j(a )=a , j(b)=b; (2)j(t)在a, b(或b, a)上具有连续导数, 且其值域不越出a, b, 则有. 这个公式叫做定积分的换元公式. 证明 由假设知, f(x)在区间a, b上是连续, 因而是可积的; f j(t)j(t)在区间a, b(或b, a)上也是连续的, 因而是可积的. 假设F(x)是f (x)的一个原函数, 则=F(b)-F(a). 另一方面, 因为Fj(t)=F j(t)j(t)= f j(t)j(t), 所以Fj(t)是f j(t)j(t)的一个原函数, 从而=Fj(b )-Fj(a )=F(b)-F(a). 因此 . 例1 计算(a0). 解 . 提示: , dx=a cos t . 当x=0时t=0, 当x=a时. 例2 计算. 解 令t=cos x, 则 . 提示: 当x=0时t=1, 当时t=0. 或 . 例3 计算. 解 . 提示: . 在上|cos x|=cos x, 在上|cos x|=-cos x. 例4 计算. 解 . 提示: , dx=tdt; 当x=0时t=1, 当x=4时t=3. 例5 证明: 若f (x)在-a, a上连续且为偶函数, 则 . 证明 因为,而 , 所以 . 讨论: 若f(x)在-a, a上连续且为奇函数, 问? 提示: 若f (x)为奇函数, 则f (-x)+f (x) =0, 从而 . 例6 若f (x)在0, 1上连续, 证明 (1); (2). 证明 (1)令, 则 . (2)令x=p-t, 则 , 所以 . 例7 设函数, 计算. 解 设x-2=t, 则 . 提示: 设x-2=t, 则dx=dt; 当x=1时t=-1, 当x=4时t=2. 二、分部积分法 设函数u(x)、v(x)在区间a, b上具有连续导数u(x)、v(x), 由(uv)=uv +u v得u v=u v-uv , 等式两端在区间a, b上积分得, 或.这就是定积分的分部积分公式.分部积分过程: . 例1 计算. 解 . 例2 计算. 解 令, 则 . 例3 设, 证明 (1)当n为正偶数时, ; (2)当n为大于1的正奇数时, . 证明 =(n-1)I n- 2-(n-1)I n , 由此得 . , , 而, , 因此 , . 例3 设(n为正整数), 证明 , . 证明 =
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新手开公司基础知识培训课件
- 幼儿园中班体育教案《羊角球》
- 成都下午茶培训课件下载
- TTTE-生命科学试剂-MCE
- 2025年中考体育考试安全应急预案
- 2025年旅游规划与设计考试试题及答案
- 2025年培训中心上半年工作总结汇报范文
- 2025年人工智能工程师计算机视觉能力测试试卷及答案
- 2025年下半年人工智能训练师考试试题及答案
- 新常态下依法治访课件
- YY 1048-2016心肺转流系统体外循环管道
- GB/T 33808-2017草铵膦原药
- GB/T 25853-20108级非焊接吊链
- SL 537-2011 水工建筑物与堰槽测流规范
- 齐鲁医学机关领导干部健康知识讲座
- 水利工程管理单位定岗标准(试点)
- 选矿概论课件汇总全套ppt完整版课件最全教学教程整套课件全书电子教案
- 自愿放弃财产协议范本书
- JIS G4304-2021 热轧不锈钢板材、薄板材和带材
- DBT 给料破碎机
- 钳工培训钳工基础知识
评论
0/150
提交评论