




已阅读5页,还剩39页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面立体的投影 根据立体表面的几何性质 可以分为平面立体和曲面立体 表面都是平面的立体 称为平面立体 如棱柱 棱锥等 表面是曲面或曲面和平面的立体 称为曲面立体 若曲面立体的表面是回转曲面称为回转体 如圆柱 圆锥 球 环等 平面立体的投影 平面立体的投影就是将组成它的平面和棱线的投影画出 并判别可见性 不可见的棱线投影用虚线画出 平面立体的投影特性 三面投影 平面立体表面上取点 线 平面立体的切割 平面与立体相交 基本要求 两平面立体相交 1平面立体的投影特性 一 棱柱的投影特性六棱柱的投影图二 棱锥的投影特性三棱锥的投影图 绘制平面立体的投影 只要找出属于平面立体上的各棱面 棱线和顶点的投影 并判别可见性 就能绘制其投影图 实质就是绘制出平面图形 直线和点的投影 判断可见性的方法 是对于可见位置的表面和棱先用粗线表示 而对于不可见位置的表面和棱线用虚线表示 一 棱柱的投影特性 一个投影为多边形 另外两个投影轮廓线为矩形 正六棱柱三面投影作图步骤 1 画出正面投影和侧面投影的对称线 水平投影的对称中心线 2 画出顶面 底面的三面投影 3 画出六个棱面的三面投影 六棱柱的投影图 二 棱锥的投影特性 一个投影为多边形 另外两个投影轮廓线为三角形 图3 4 a 为一正三棱锥 它由底面 ABC和三个棱面 SAB SBC SAC组成 棱锥的底面 ABC是一个水平面 它的水平投影 abc反映 ABC的实形 正面和侧面投影积聚成水平直线段 棱面SAC为侧垂面 侧面投影积聚成一直线段 水平和正面投影不反映实形 棱面SAB和SBC为一般位置平面 与三个投影面均倾斜 所以三个棱面的投影既不积聚 也不反映实形 底边AB BC为水平线 AC为侧垂线 棱线SB为侧平线 棱线SA SC为一般位置直线 三棱锥的投影图 例题1 求立体的侧面投影 2平面立体表面上取点 一 棱柱表面上取点二 棱锥表面上取点 平面立体可看作是由若干个平面多边形所围成的 所以在平面立体表面上取点或取线时 应把属于平面立体的棱面作为单独的平面来考虑 在平面立体的表面上取点 取直线的方法与在平面上取点 取线的方法基本相同 即一般为辅助线法 但要注意可见性的判别 一 棱柱表面上取点 a 1 r 二 三棱锥表面上取点 2 2 三棱锥表面上取点 3 三棱锥表面上取点 3平面立体的切割 一 平面立体的截交线二 平面立体截交线的性质三 平面立体截交线的求法1 棱柱上截交线的求法2 棱锥上截交线的求法 一 平面立体的截交线 平面 曲面 立体与平面相交 或立体被平面截去一部分 这时 立体表面所产生的交线称为截交线 这个平面称为截平面 二 平面立体截交线的性质 1 平面立体的截交线是截平面与平面立体表面的共有线 截交线上的点是截平面与立体表面上的共有点 2 由于平面立体的表面都具有一定的范围 所以截交线通常是封闭的平面多边形 3 多边形的各顶点是平面立体的各棱线或边与截平面的交点 多边形的各边是平面立体的棱面与截平面的交线 或是截平面与截平面的交线 三 平面立体截交线的求法 平面立体被单个或多个平面切割后 既具有平面立体的形状特征 又具有截平面的平面特征 因此在看图或画图时 一般应先从反映平面立体特征视图的多边形线框出发 想象出完整的平面立体形状并画出其投影 然后再根据截平面的空间位置 想象出截断面的形状并画出其投影 平面立体上切口 截交线 的画法 常利用平面特性中 类似形 这一投影特征来作图 1棱柱上截交线的求法 1 求出截平面与棱线上若干条棱线的交点 如立体被多个平面截割 应求出截平面间的交线 2 依次连线各点 3 判断可见性 4 整理轮廓线 2 1 2 3 4 5 3 1 4 5 1 3 2 4 5 例 四棱柱被P Q截切 求侧投影 P 为正垂面 p p为类似图形 投影分析 Q为铅垂面 q q 为类似图形 P Q 按 三等 关系作图 p p q q p q 1 2 3 4 1 4 3 4 1 2 5 6 7 5 6 7 5 6 7 2 3 检查 例题2 求立体切割后的投影 求立体截割后的投影 9 6 10 5 2 棱锥上截交线的求法 1 找到截平面与棱线上若干条棱线的交点 如立体被多个平面截割 应求出截平面间的交线 2 依次各点连线 3 判断可见性 4 整理轮廓线 1 1 求立体切割后的投影 1 6 3 4立体与立体相交的投影 立体的相交种类 平平相交 平面体与平面体相交平曲相交 平面体与曲面体相交曲曲相交 曲面体与曲面体相交 2 1 c b 1 2 a d 1 2 a b d c 3 4 5 3 5 4 4 3 5 6 7 8 6 7 8 6 7 8 1 相贯线的性质相贯线是两立体表面的共有线 相贯线上的点是两立体表面的共有点 不同的立体以及不同的相贯位置 相贯线的形状也不同 2 相贯线的形状两平面立体的相贯线由折线组成 折线的每一段都是甲形体的一个侧面与乙形体的一个侧面的交线 折线的转折点就是一个形体的侧棱与另一形体的侧面的交点 3 求相贯线的方法求两平面立体相贯线的方法通常有两种 一种是求各侧棱对另一形体表面的交点 然后把位于甲形体同一侧面又位于乙形体同一侧面上的两点 依次连接起来 另一种是求一形体各侧面与另一形体各侧面的交线 4 判别相贯线可见性的原则只有位于两形体都可见的侧面上的交线 是可见的 只要有一个侧面不可见 面上的交线就不可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025汽车租赁合同协议书合同范本
- 腊肉代理销售合同范本
- 黄金委托合同范本
- 培训合同范本
- 深圳地铁签合同范本
- 天使轮投资合同范本
- 2025自习室租赁合同范本
- 索要基金投资合同范本
- 德国没租房合同范本
- 课件委托制作合同范本
- 2025年秋季新学期全体中层干部会议校长讲话:在挑战中谋突破于坚实处启新篇
- 2025年幼儿园保育员考试试题(附答案)
- 【《惠东农商银行个人信贷业务发展现状及存在的问题和策略分析》15000字】
- 2025年上半年中国铁路兰州局集团有限公司校招笔试题带答案
- 2025中国医师节宣传教育课件
- 光伏项目开发培训课件
- 消防设施操作员(监控方向)中级模拟考试题及答案
- 2025秋季学期中小学学校学生校服采购工作方案
- 关于茶叶的幼儿课件
- DRG政策培训课件
- 北京市东城区2024-2025学年高二下学期期末统一检测数学试卷【含答案解析】
评论
0/150
提交评论