八年级数学下册 1 三角形的证明 1 等腰三角形(第2课时)课件 (新版)北师大版.ppt_第1页
八年级数学下册 1 三角形的证明 1 等腰三角形(第2课时)课件 (新版)北师大版.ppt_第2页
八年级数学下册 1 三角形的证明 1 等腰三角形(第2课时)课件 (新版)北师大版.ppt_第3页
八年级数学下册 1 三角形的证明 1 等腰三角形(第2课时)课件 (新版)北师大版.ppt_第4页
八年级数学下册 1 三角形的证明 1 等腰三角形(第2课时)课件 (新版)北师大版.ppt_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

八年级数学 下新课标 北师 第一章三角形的证明 1等腰三角形 第2课时 学习新知 问题思考 观察后解答下列问题 1 你能从图中发现一些相等的线段吗 2 你能用一句话概括你所得到的结论吗 3 你能结合图形分别写出已知 求证和证明过程吗 等腰三角形的性质 例1证明 等腰三角形两底角的平分线相等 已知 如图所示 在 abc中 ab ac bd和ce是 abc的角平分线 求证 bd ce 证法1 ab ac abc acb 等边对等角 bd ce分别平分 abc和 acb 1 abc 2 acb 1 2 acb abc bc cb 1 2 bdc ceb asa bd ce 全等三角形的对应边相等 在 bdc和 ceb中 证法2 ab ac abc acb bd ce分别平分 abc和 acb 3 abc 4 acb 3 4 在 abd和 ace中 3 4 ab ac a a abd ace asa bd ce 全等三角形的对应边相等 补充例题 如图所示 在等腰三角形abc中 ab ac 1 如果 abd abc ace acb呢 由此 你能得到一个什么结论 2 如果ad ac ae ab 那么bd ce吗 如果ad ac ae ab呢 由此 你能得到什么结论 解 1 bd ce 这和证明等腰三角形两底角的平分线相等类似 证明如下 ab ac abc acb 等边对等角 abd abc ace acb abd ace 在 bda和 cea中 abd ace ba ca a a bda cea asa bd ce 全等三角形的对应边相等 由此我们可以发现 在 abc中 ab ac abd abc ace acb 就一定有bd ce成立 n 1 2 如果ad ac ae ab 那么bd ce吗 如果ad ac ae ab呢 由此 你能得到什么结论 在 adb和 aec中 ab ac a a ad ae adb aec sas bd ce 全等三角形的对应边相等 证明 在 abc中 ab ac 如果ad ac ae ab 那么bd ce 如果ad ac ae ab 那么bd ce 由此我们得到了一个结论 在 abc中 ab ac 如果ad ac ae ab 那么bd ce n 1 证明如下 ab ac ad ac ae ab ad ae 等边三角形的性质 定理 等边三角形的三个内角都相等 并且每个角都等于60 已知 如图所示 在 abc中 ab ac bc 求证 a b c 60 证明 ab ac b c 等边对等角 又 ac bc 已知 a b 等边对等角 a b c 在 abc中 a b c 180 a b c 60 检测反馈 2 2015 衡阳中考 已知等腰三角形的两边长分别为5和6 则这个等腰三角形的周长为 a 11b 16c 17d 16或17 1 等腰三角形的一个角是80 则它顶角的度数是 a 80 b 80 或20 c 80 或50 d 20 解析 这个角可能是顶角也可能是底角 故选b b 解析 分两种情况 当三边长为5 5 6时 周长为16 当三边长为5 6 6时 周长为17 故选d d 3 如图所示 在 abc中 ab ac de bc 若 ade 48 则下列结论中不正确的是 a b 48 b aed 66 c a 84 d b c 96 b 4 如图所示 在 abc中 ab ac abc的外角 dac 130 则 b 解析 ab ac b c dac 130 bac 50 c b 65 故填65 65 5 如图所示 在 pbq中 bp 6 点a c d分别在bp bq pq上 且cd pb ad bq qdc pda 则四边形abcd的周长为 12 6 如图所示 在等腰三角形abc中 ab

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论