




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习资料收集于网络,仅供参考华南理工大学网络教育学院高等数学(上)辅导一、 判断两个函数的定义域是否相同1、与是否表示同一个函数?2、与表示同一个函数二、 常见的等价无穷小及等价无穷小替换原理常见的等价无穷小: 无穷小替换原理:在求极限过程中,无穷小的因子可以用相应的等价无穷小替换例题:1、?解:当,原式=2、?解:原式=3、?解:当 原式=4、?解:当 原式=.5、?解:当 原式=.三、 多项式之比的极限,四、 可导与连续等的关系1、若在点导数存在, 则在点连续. 、2. 若是的驻点,则它不一定是的极小值点. 五、 导数的几何意义(填空题):表示曲线在点处的切线斜率曲线.在点处的切线方程为:曲线在点处的法线方程为:例题:1、曲线在点的切线的斜率解: 2、曲线在点处的切线方程解:所以曲线在点处的切线方程为:,即3、曲线在点处的切线方程解:所以曲线在点处的切线方程为:,即六、 导数的四则运算、复合函数的导数、微分复合函数求导的链式法则: 微分:例题:1、设,则?解:2、设,则?解:3、设,则?解: 则4、设,则?解:所以5、设,则?(答案:)七、 运用导数判定单调性、求极值例题:1、求的单调区间和极值解:定义域令,求出驻点-0+单调减极小值点单调增函数的单调递减区间为,单调递增区间为 极小值为2、求的单调区间和极值解:定义域令,求出驻点1+0-单调增极大值点单调减函数的单调递减区间为,单调递增区间为,极大值为3、求函数.的单调区间和极值解:定义域 令,得0+0-单调增极大值点单调减单调递增区间:,单调递减区间:,极大值为4、求函数的极值答案:极小值为,极大值为八、 隐函数求导例题:1、求由方程所确定的隐函数的导数解:方程两边关于求导,得:即 2、求由方程所确定的隐函数的导数解:方程两边同时关于x求导,得:即3、求由方程所确定的隐函数的导数 答案: 4、求由方程所确定的隐函数的导数 答案: 九、 洛必达法则求极限,注意结合等价无穷小替换原理例题:1、求极限解:原式 . 2、求极限解:原式=3、求 (答案:)十、 凑微分法求不定积分(或定积分)简单凑微分问题:,,一般的凑微分问题:,例题:1、解:注意到原式=2、解:注意到原式=3、解:注意到原式=4、解:原式=5、解:原式6、解:原式十一、 不定积分的分部积分法(或定积分)诸如,可采用分部积分法分部积分公式:例题:1、求不定积分 解 2、求不定积分解 3、求不定积分解 十二、 定积分的概念及其性质知识点:定积分的几何意义,奇偶对称性等例题:1、定积分等于 解: 因为是的奇函数,所以原式=02、定积分等于 解: 因为是的奇函数,所以原式=02、一字开花。(一字组多词)火 火字旁 (炒 烧 ) 口 方框(国 园 圆)3、定积分等于 火红火红的太阳(花儿) 金黄金黄的落叶(麦田、稻田、油菜花)解: 因为是的奇函数,所以原式=0走字旁:赶、起十三、十四、 一面红旗 一个朋友 一对朋友 一条木船 一条小河变上限积分函数求导例题:我帮老师收作业。 我为大家扫地。1、 设函数在上连续,则( C )A3、加偏旁组字,再组词。BCD2、设,则例一、寸 过 (过去 );巴 口 吧 ( 来吧 )。3、设,则十五、 凑微分法求定积分(或不定积分)难忘的 (节日 ) 长长的 (小河 )思想与不定积分类似足字旁:跑、跟、跳例题:1、解:注意到原式= 十六、 定积分的分部积分法(或不定积分)思想与不定积分类似例题:1、求定积分 解 2、求定积分解 十七、 求平面图形面积知识点:X型积分区域的面积求法 Y型积分区域的面积求法 通过作辅助线将已知区域化为若干个X型或Y型积分区域的面积求法例题:1、求由、,及所围成的封闭图形的面积解:由得 面积为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业知识测试试题及答案
- 尿毒症甲状旁腺术后护理
- 婴幼儿肛周脓肿护理查房
- 药剂师的述职报告
- 服装店长的培训
- 2025年智能可穿戴设备野生动物追踪生物传感技术创新报告
- 2025-2030钻石行业市场现状供需特点及投资价值规划分析研究报告
- 2025至2030中国电化学酒精测试设备行业发展趋势分析与未来投资战略咨询研究报告
- 体检中心护理培训
- 公司出纳工作汇报
- 浅谈机关干部身心健康
- (2025)未成年人保护法知识竞赛必刷题库附含参考答案
- 江苏省淮安市2024-2025学年七年级下学期6月期末考试英语试题(含答案解析)
- 企业融资培训课件
- 小学生拖地课件
- 期货技术指标培训课件
- 上海市静安区2024-2025学年高一下学期期末教学质量调研数学试卷(含答案)
- 深圳片区控制性详细规划设计导则2025
- 2025至2030中国多圈绝对旋转编码器行业项目调研及市场前景预测评估报告
- 译林版六年级上册公开课Unit-3holiday-fun(story-time)教案课件原创
- 供暖电工面试题及答案
评论
0/150
提交评论