



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
21.2.2 公式法【知识与技能】1.理解并掌握求根公式的推导过程;2.能利用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严谨认真的科学态度.【教学重点】用公式法解一元二次方程.【教学难点】推导一元二次方程求根公式的过程.一、情境导入,初步认识我们知道,对于任意给定的一个一元二次方程,只要方程有解,都可以利用配方法求出它的两个实数根.事实上,任何一个一元二次方程都可以写成ax2+bx+c=0的形式,我们是否也能用配方法求出它的解呢?想想看,该怎样做?让学生回顾用配方法解一元二次方程的一般过程,从而尝试着求ax2+bx+c=0(a0)的方程的解,导入新课,教学时,应给予足够的思考时间,让学生自主探究.二、思考探究,获取新知通过问题情境思考后,师生共同探讨方程ax2+bx+c=0(a0)的解.由ax2+bx+c=0(a0),移项,ax2+bx=-c.二次项系数化为1,得x2+x=-.配方,得x2+x+ =-+,即.至此,教师应作适当停顿,提出如下问题,引导学生分析、探究:(1)两边能直接开平方吗?为什么?(2)你认为下一步该怎么办?谈谈你的看法.师生共同完善认知:一般地,式子b2-4ac叫做一元二次方程ax2+bx+c=0(a0)根的判别式,通常用表示,即=b2-4ac.从而有:当=b2-4ac0时,方程ax2+bx+c=0(a0)有两个不相等的实数根;当=b2-4ac=0时,方程ax2+bx+c=0(a0)有两个相等实数根;当=b2-4ac0时,方程ax2+bx+c=0(a0)没有实数解;当0时,方程ax2+bx+c=0(a0)的两个实数根可写成x= ,这个式子叫做一元二次方程ax2+bx+c=0(a0)的求根公式.三、典例精析,掌握新知例2用公式法解下列方程:(1)x2-4x-7=0; (2)2x2-2x+1=0; (3)5x2-3x=x+1; (4)x2+17=8x分析:将方程化为一般形式后,找出a、b、c的值并计算b2-4ac后,可利用公式求出方程的解.四、运用新知,深化理解教材第12页练习1.解下列方程:(1)x2+x-6=0; (2)x2-x-14=0; (3)3x2-6x-2=0;(4)4x2-6x=0; (5)x2+4x+8=4x+11; (6)x(2x-4)=5-8x.2. 无论p取何值,方程(x-3)(x-2)-p2=0总有两个不等 的实数根吗?给出你的答案并说明理由. 五、师生互动,课堂小结当=b2-4ac0时,方程ax2+bx+c=0(a0)有两个不相等的实数根;当=b2-4ac=0时,方程ax2+bx+c=0(a0)有两个相等实数根;当=b2-4ac0时,方程ax2+bx+c=0(a0)没有实数解;当0时,方程ax2+bx+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业自动化与智能电网的融合探讨
- 工业遗产在旅游业中的利用与发展前景分析
- 工业遗产改造为文化创意产业园的实践案例研究
- 工业设计的趋势与前景分析
- 工业设计创新与趋势分析
- 工作环境改善与团队效率关系研究
- 工厂操作人员必须了解的版本更新质量要求
- 工程物流项目的高效安全管理模式及实施策略探讨
- 市场分析与预测方法在市场营销中的应用
- 工程项目管理中的数据化决策与汇报
- Java Web 程序设计(山东联盟)智慧树知到课后章节答案2023年下潍坊学院
- (完整版)四宫格数独题目204道(可直接打印)及空表(一年级数独题练习)
- 劳务派遣投标方案(完整技术标)
- 日内瓦公约(全文)
- 中建金属屋面施工方案完整版
- 支付清算系统参与者考试题库五
- 成麻五元算账一览表
- 部编版小学语文五年级下册第二单元易错点检测卷-(含答案)
- 数控铣床及加工中心编程与操作
- 最高法关于民间借贷的司法解释全文
- 甘肃省静疗知识大赛考试题库大全-上(选择、判断题部分)
评论
0/150
提交评论