



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省佛山市中大附中三水实验中学高三数学2.9函数与方程基础复习学案 新人教a版 研读考纲知识梳理备考建议(1)准确理解函数零点的概念,方程的根、函数与x轴的交点,三者之间的区别与联系,能够实现彼此之间的灵活转化,并能利用特殊点的函数值,根据零点存在性定理来判断函数零点所在的区间;(2)灵活运用函数图象,将函数零点转化为两个函数图象的交点,注重数形结合思想的应用方法提示一个口诀用二分法求函数零点近似值的口诀为:定区间,找中点,中值计算两边看同号去,异号算,零点落在异号间周而复始怎么办?精确度上来判断 两个防范(1)函数yf(x)的零点即方程f(x)0的实根,是数不是点(2)若函数yf(x)在闭区间a,b上的图象是连续不间断的,并且在区间端点的函数值符号相反,即f(a)f(b)0,满足这些条件一定有零点,不满足这些条件也不能说就没有零点如图,f(a)f(b)0,f(x)在区间(a,b)上照样存在零点,而且有两个所以说零点存在性定理的条件是充分条件,但并不必要三种方法函数零点个数的判断方法:(1)直接求零点:令f(x)0,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要求函数在区间a,b上是连续不断的曲线,且f(a)f(b)0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点考向训练1、 零点的求解与判断例 (2012年辽宁卷理科11)设函数f(x)满足f()=f(x),f(x)=f(2x),且当时,f(x)=x3.又函数g(x)=|xcos|,则函数h(x)=g(x)-f(x)在上的零点个数为( )(a)5 (b)6 (c)7 (d)8ex:1、(2012年高考湖北卷理科9)函数f(x)=在区间0,4上的零点个数为( )a.4 b.5 c.6 d.72、 函数f(x)=x+的零点所在的区间为( ) a.0, b., c., d.,13、(11天津理2)函数的零点所在的一个区间是() abcd4、设函数f(x)=则y=f(x) ( )a. 在区间(,1),(1,e)均有零点 b.在区间(,1)有零点,区间(1,e)无零点c.在区间(,1),(1,e)均无零点 d.在区间(,1)无零点,区间(1,e)有零点5、函数f(x)=的零点个数为( ) a.0 b.1 c.2 d.38、设函数f(x)=4sin(2x+1) -x,则在下列区间中,函数f(x)不存在零点的是( ) a.-4,-2 b.-2,0 c.0,2 d.2,4二、零点的综合应用例1、(2010浙江)已知x0是函数f(x)=2x+的一个零点.若x1(1,x0),x2(x0,+),则( )a.f(x1)0,f(x2)0 b.f(x1)0c.f(x1)0,f(x2)0,f(x2)0例2、(1)m为何值时,f(x)=x2+2mx+3m+4. 有且仅有一个零点;有两个零点且均比-1大;(2) 若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.ex:1、(11重庆理10)设m,k为整数,方程在区间(0,1)内有两个不同的根,则m+k的最小值为( )(a) -8 (b)8 (c)12 (d) 1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省福州第四中学2026届高一化学第一学期期末复习检测模拟试题含解析
- 桥梁专业知识培训课件
- 2026届河北省巨鹿中学高一化学第一学期期末监测模拟试题含解析
- 2025年机关事务管理面试宝典门诊部岗位面试模拟题及解析
- 2025年徐州市中考生物试题卷(含答案及解析)
- 2025江苏高校大学《辅导员》招聘考试题库及答案
- 2025年初级摄影课程学员面试题
- 2025年度注册验船师资格考试船舶检验法律法规考前冲刺模拟题及答案(网页版)
- 2025年验船师考试(C级船舶检验专业实务)考前模拟试题及答案二
- 北京市门头沟区2024-2025学年八年级上学期第二次月考生物考试题目及答案
- 蛇咬伤急救处理流程
- 陕西省特种设备隐患排查清单(2025年)
- 货款转让协议书
- 2025年内蒙古鄂尔多斯一中高考生物倒计时模拟卷含解析
- 2025CACA子宫颈癌诊疗指南解读
- 绿色建筑概论 课件全套 第1-11章 绿色建筑概述-绿色建筑运营与维护
- 2025医务人员手卫生规范
- 医务人员行为规范
- 光伏电站安全培训
- GB/T 35267.4-2025清洗消毒器第4部分:内镜清洗消毒器
- DB45T 1056-2014 土地整治工程 第2部分:质量检验与评定规程
评论
0/150
提交评论