免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时对数函数及其性质的应用学习目标1.进一步加深理解对数函数的概念.2.掌握对数函数的性质及其应用知识链接对数函数的图象和性质a10a1图象性质定义域(0,)值域r过定点(1,0),即当x1时,y0单调性在(0,)上是增函数在(0,)上是减函数奇偶性非奇非偶函数要点一对数值的大小比较例1比较下列各组中两个值的大小:(1)ln 0.3,ln 2;(2)loga3.1,loga5.2(a0,且a1);(3)log30.2,log40.2;(4)log3,log3.解(1)因为函数yln x是增函数,且0.32,所以ln 0.3ln 2.(2)当a1时,函数ylogax在(0,)上是增函数,又3.15.2,所以loga3.1loga5.2;当0a1时,函数ylogax在(0,)上是减函数,又3.15.2,所以loga3.1loga5.2.(3)方法一因为0log0.23log0.24,所以,即log30.2log40.2.方法二如图所示,由图可知log40.2log30.2.(4)因为函数ylog3x是增函数,且3,所以log3log331.同理,1loglog3,所以log3log3.规律方法比较对数式的大小,主要依据对数函数的单调性1若底数为同一常数,则可由对数函数的单调性直接进行比较2若底数为同一字母,则根据底数对对数函数单调性的影响,对底数进行分类讨论3若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较,也可以利用顺时针方向底数增大的规律画出函数的图象,再进行比较4若底数与真数都不同,则常借助1,0等中间量进行比较跟踪演练1(1)设alog32,blog52,clog23,则()aacb bbcaccba dcab(2)已知alog23.6,blog43.2,clog43.6,则()aabc bacbcbac dcab答案(1)d(2)b解析(1)alog32log331;clog23log221,由对数函数的性质可知log52log32,bac,故选d.(2)alog23.6log43.62,函数ylog4x在(0,)上为增函数,3.623.63.2,所以acb,故选b.要点二对数函数单调性的应用例2求函数ylog(1x2)的单调增区间,并求函数的最小值解要使ylog(1x2)有意义,则1x20,x21,则1x1,因此函数的定义域为(1,1)令t1x2,x(1,1)当x(1,0时,x增大,t增大,ylogt减小,x(1,0时,ylog(1x2)是减函数;当x0,1)时,ylog(1x2)是增函数故函数ylog(1x2)的单调增区间为0,1),且函数的最小值yminlog(102)0.规律方法1.求形如ylogaf(x)的函数的单调区间,一定树立定义域优先意识,即由f(x)0,先求定义域2求此类型函数单调区间的两种思路:(1)利用定义求证;(2)借助函数的性质,研究函数tf(x)和ylogat在定义域上的单调性,从而判定ylogaf(x)的单调性跟踪演练2(1)函数f(x)|logx|的单调递增区间是()a. b(0,1c(0,) d1,)(2)设函数f(x)则满足f(x)2的x的取值范围是()a1,2 b0,2c1,) d0,)答案(1)d(2)d解析(1)f(x)当x1时,tlogx是减函数,f(x)logx是增函数f(x)的单调增区间为1,)(2)f(x)2或0x1或x1,故选d.要点三对数函数的综合应用例3已知函数f(x)loga(a0且a1),(1)求f(x)的定义域;(2)判断函数的奇偶性和单调性解(1)要使此函数有意义,则有或解得x1或x1,此函数的定义域为(,1)(1,)(2)f(x)logalogalogaf(x)又由(1)知f(x)的定义域关于原点对称,f(x)为奇函数f(x)logaloga(1),函数u1 在区间(,1)和区间(1,)上单调递减所以当a1时,f(x)loga在(,1),(1,)上递减;当0a1时,f(x)loga在(,1),(1,)上递增规律方法1.判断函数的奇偶性,首先应求出定义域,看是否关于原点对称2求函数的单调区间有两种思路:(1)易得到单调区间的,可用定义法来求证;(2)利用复合函数的单调性求得单调区间跟踪演练3已知函数f(x)loga(a0,a1,m1)是奇函数(1)求实数m的值;(2)探究函数f(x)在(1,)上的单调性解(1)由已知条件得f(x)f(x)0对定义域中的x均成立logaloga0,即1,m2x21x21对定义域中的x均成立m21,即m1(舍去)或m1.(2)由(1)得f(x)loga.设t1,当x1x21时,t1t20,t1t2.当a1时,logat1logat2,即f(x1)f(x2),当a1时,f(x)在(1,)上是减函数同理当0a1时,f(x)在(1,)上是增函数1函数yln x的单调递增区间是()ae,) b(0,)c(,) d1,)答案b解析函数yln x的定义域为(0,),其在(0,)上是增函数,故该函数的单调递增区间为(0,)2设alog54,b(log53)2,clog45,则()aacb bbcacabc dbac答案d解析1log55log54log53log510,1alog54log53b(log53)2.又clog45log441.cab.3函数f(x)的定义域是()a(1,) b(2,)c(,2) d(1,2答案d解析由题意有解得1x2.4函数f(x)的值域为_答案(,2)解析当x1时,logxlog10,当x1时,f(x)0.当x1时,02x21,即0f(x)2.因此函数f(x)的值域为(,2)5函数f(x)log5(2x1)的单调增区间是_答案解析要使ylog5(2x1)有意义,则2x10,即x,而ylog5u为(0,)上的增函数,当x时,u2x1也为r上的增函数,故原函数的单调增区间是.1.比较两个对数值的大小及解对数不等式问题,其依据是对数函数的单调性若对数的底数是字母且范围不明确,一般要分a1和0a1两类分别求解2解决与对数函数相关的问题时要树立“定义域优先”的原则,同时注意数形结合思想和分类讨论思想在解决问题中的应用一、基础达标1若集合a,则ra等于()a(,0b.c(,0d.答案a解析logx,即logxlog,0x,即a,ra.故选a.2设alog3,blog2,clog3,则()aabc bacbcbac dbca答案a解析alog31,blog2log23,clog3log32,故有abc.3函数f(x)logax(0a1)在a2,a上的最大值是()a0 b1 c2 da答案c解析0a1,f(x)logax在a2,a上是减函数,f(x)maxf(a2)logaa22.4函数f(x)lg()的奇偶性是()a奇函数 b偶函数c即奇又偶函数 d非奇非偶函数答案a解析f(x)定义域为r,f(x)f(x)lg()lg()lglg 10,f(x)为奇函数,选a.5函数ylog(x24x12)的单调递减区间是()a(,2) b(2,)c(2,2) d(2,6)答案c解析ylogu,ux24x12.令ux24x120,得2x6.x(2,2)时,ux24x12为增函数,ylog(x24x12)为减函数,函数的单调减区间是(2,2)6已知定义域为r的偶函数f(x)在0,)上是增函数,且f()0,则不等式f(log4x)0的解集是_答案x|x2解析由题意可知,f(log4x)0log4xlog44log4xlog44x2.7已知f(x)(logx)23logx,x2,4试求f(x)的最大值与最小值解令tlogx,则yt23t(t)2,2x4,log4logxlog2,即2t1.可知y(t)2在2,1上单调递减当t2时,y取最大值为10;当t1时,y取最小值为4.故f(x)的最大值为10,最小值为4.二、能力提升8设alog36,blog510,clog714,则()acba bbcacacb dabc答案d解析alog36log33log321log32,blog510log55log521log52,clog714log77log721log72,log32log52log72,abc,故选d.9已知函数f(x)是定义在r上的偶函数,且在区间0,)上单调递增若实数a满足f(log2a)f(loga)2f(1),则a的取值范围是()a1,2 b.c,2 d(0,2答案c解析f(loga)f(log2a)f(log2a),原不等式可化为f(log2a)f(1)又f(x)在区间0,)上单调递增,0log2a1,即1a2.f(x)是偶函数,f(log2a)f(1)又f(x)在区间(,0上单调递减,1log2a0,a1.综上可知a2.10已知函数f(x)若f(x)在(,)上单调递增,则实数a的取值范围为_答案a|2a3解析函数f(x)是(,)上的增函数,a的取值需满足解得2a3.11讨论函数f(x)loga(3x22x1)的单调性解由3x22x10得函数的定义域为.则当a1时,若x1,则u3x22x1为增函数,f(x)loga(3x22x1)为增函数若x,则u3x22x1为减函数f(x)loga(3x22x1)为减函数当0a1时,若x1,则f(x)loga(3x22x1)为减函数;若x,则f(x)loga(3x22x1)为增函数三、探究与创新12已知x满足不等式:2(logx)27logx30,求函数f(x)的最大值和最小值解由2(logx)27logx30,可解得3logx,即x8,log2x3.f(x)(log2x2)(log2x1)2,当log2x,即x2时,f(x)有最小值.当log2x3,即x8时,f(x)有最大值2.f(x)min,f(x)max2.13已知f(x)2log3x,x1,9,求yf(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年能源加工公司财务基本制度管理总则
- 2025珠海市斗门区委组织部招聘2名普通雇员易考易错模拟试题(共500题)试卷后附参考答案
- 数据要素保险机制:“十五五”风险分散新路径
- 2025湖南长沙市社会科学界联合会招聘普通雇员1人易考易错模拟试题(共500题)试卷后附参考答案
- 体育产品:利用微生态产品吸引消费者
- 2025湖南株洲市人民政府办公室招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2025湖北咸宁市咸安区事业单位招聘工作人员易考易错模拟试题(共500题)试卷后附参考答案
- 2025海南省三亚市事业单位招考易考易错模拟试题(共500题)试卷后附参考答案
- 2025浙江明州测绘院招聘2人易考易错模拟试题(共500题)试卷后附参考答案
- 2025浙江台州市黄岩站场管理服务限公司招聘5人易考易错模拟试题(共500题)试卷后附参考答案
- 方太闻香活动方案
- 2025年新疆中考数学试题(含答案)
- 口腔拔牙病例诊疗规范
- 2024年广东省清远市事业单位招聘考试《公共基础知识》真题库及答案
- D级压力容器质量管理体系内审资料符合TSG07-2019附录M
- 大数据与会计专业职业生涯规划书3400字数
- 大米加工安全管理制度
- 赣州江钨新型合金材料有限公司南侧预留地块(DBA2012014-1)土壤污染状况初步调查报告
- 山东春季高考ps试题及答案
- 舟山市社区工作者招聘真题2024
- 食品用塑料包装、容器生产许可审查细则
评论
0/150
提交评论