外文翻译=金属正交切削中的残余应力和压力=4000字符_第1页
外文翻译=金属正交切削中的残余应力和压力=4000字符_第2页
外文翻译=金属正交切削中的残余应力和压力=4000字符_第3页
外文翻译=金属正交切削中的残余应力和压力=4000字符_第4页
外文翻译=金属正交切削中的残余应力和压力=4000字符_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中国地质大学长城学院 本 科 毕 业 设 计外文文献翻译 系 别 工程技术系 学生姓名 陈东辉 专 业 机械设计制造及其自动化 学 号 05211523 指导教师 杨运强 职 称 教授 2015 年 4 月 20 日 金属正交切削中的残余应力和压力 摘要 在平面变形情况下,有限元法用 于模仿和分析正交金属切削过程。在剩余应力和张力领域完成制件与对焦。采用了各种建模。沿工具芯片界面摩擦相互作用,建模与改良库仑摩擦法。基于临界应力准则的节点释放技术建立芯片分离模型。在与温度相关的材料属性和工具的范围内,确定是前角和摩擦系数的值。实验发现通过热冷却,取决于这些参数的范围可以增加残余水平应力,倾角和磨擦系数的影响,并且是非线性的。比较预测残余应力与文献中的实验观测结果。 关键词: 有限限元模拟 金属正交切削 残余应力 1.导言 金属 正交 切削 , 非线性 复杂 耦合 的 热机械 进程 的 加 工 操作 。 应变 和 主 剪切 带 中 的高 应变 率 和 相应 芯片 与 工具 之间 的 联系 , 沿 辅助 剪切 区域 复杂性 的摩擦 。 除 上述 以外 , 工作 形成 的 切屑 和 工具 之间 的 摩擦 引起 产 热 。 在 金属 切削加工 的 副产品 中 , 出现残余 应力 与新增 压力 , 会 影响 已加工 表面 的 完整性 , 缩短 机械 组件 蠕变 疲劳 寿命 。 因此 , 审慎 评估 工件 残余 应力 与 应变 的 区域 是 必要 的 , 针对 机械 零件 在 蠕变 疲劳 载荷 条件 下 过早 失效 ,要对 切削 过程 的 进行 优化 与 维护 。 在过去 60 年 中, 已经进行了大量的金属切削研究工作 , Theearliest 和 Piispanen 开发 了 金属切削力学分析模型 。 这些模型被称为剪角模型, 它们都提供剪角、 倾角和磨擦系数的实证关系。这些模型还可用于估计 部件 、 应力 和 平面应变条件下的金属切削加工过程中的能源消耗。 在这以后 制订了更复杂的剪角模型,以包括各种设计参数的影响 。 Lee 李和 Shaffer 提出一种基于滑移线场理论,其中假定刚性完美塑料材料 切削 和直剪切平面的剪角模型。 kudo 通过引入曲线的剪切平面来考虑控制曲线的 切片 和直线工具之间的接触 , 修改滑移线模型。帕尔默 .奥克斯利和奥克斯利 认为是在 粘塑性条件和工 件 硬化及应变率效应 。 duke 等人研究芯片和工具之间的界面摩擦的安置 , 触发器和分析局部加热 的金属切削加工的影响 。 有限元方法 已经广泛的应用于 各种金属切削技术 的研究 。有限元方法的多功能性使得它考虑到 工件大变形、 应变率效应、 工具芯片接触和摩擦,局部加热和温度的影响、 不同边界和加载条件,和其他现象遇到的金属切削加工问题。 Usui 和 Shirakashi 开发的金属切削加工 模型是 早期有限元模型之一 。 基于经验数据 , 他们假定无关变形的材料和工具提示在芯片分离几何的标准。岩田等人提议低速金属切削的有限元模型,其中假定塑料为材料和包括该工具与芯片之间的摩擦的影响 (但忽略温度影响)。Strenkowski 和卡罗尔 , 用基于在工件中有效的塑性应变芯片分离准则 , 更新 了 的拉格朗日制订的代码 NIKE2D 有限元。 Komvopoulos 和 Erpenbeck 研究的 各向同性的 应变硬化和 strainrate 研究的 敏感性视为理想弹塑性材料和材料。有限元分析基于耦合热弹塑性大变形本构模型和雇用芯片分离的应变能量密度标准。田和杨上 在 正交的金属切削过程 , 基于最优理论和欧拉参考系统中的一个极限分析定理进行有限元研究。施和杨进行了两个有限元正交金属切削研究 实验 。通用有限元代码的正交金属切削研究和调查的摩擦影响和工具的形变场数 量分布的倾角。已经比较了这些研究与文献中的实验数据和新的测试及其作者所取得的成果。 以上讨论的分析与数值提供了 很好的 金属切削过程的理解 与 模拟的研究。尤其是,这些研究涉及大应变和应变率、 稳态反应、 摩擦和局部加热的影响和芯片分离标准等问题。但是,已进行 的 多计算工作,以了解有关机械加工零件的表面完整性的问题。 已知残余应力会 使 表面完整性 产生影响 。 Henriksen 为 了解在加工表面的各种切削条件下的钢和铸铁零件中的残余应力进行一系列的测试。他 在 报告说残余应力可能高达 689.48 MPa 。他还强调了在韧性材 料 (如碳钢) 。 通常拉伸和压缩的脆性材料 (铁 等 )。由于各种原因已归入在工件中的残余应力的原因。刘和拉什观察到工件表面的机械变形诱导残余应力。科诺中南工业大学和 Tonsoff 等人发现残余应力是依赖的切削速度 , 残余应力 对 工件材料的硬度有重大影响。表明在金属切削中的摩擦也有助于形成的残余应力。确定 了 机械加工零件,如评价显微硬度、 表面完整性的各种方法 x 射线衍射,和层去除偏转技术 。 日本早稻田大学柿野, 发现 残余应力均与加工中的切削力和温度分布 有关, 提出了早期预测模型的残余应力。在另一种分析模型 中, 连接残 余应力和工件 最脆弱部位 。施和杨进行 了 机械加工的工件残余应力分布的联合实验 , 计算研究。最近,刘和郭用有限元方法来评价在工件的残余应力。他们还观察到进行第二次下调 时在 切割面上残余应力幅度降低了 。 虽然现有 的资料为 机械加工部件的残余应力的 研究 提供了重要的见解, 但是 残余应变分布,从每个阶段的切割冷却过程 中 工具耙角影响的等问题,仍然没有得到充分的理解。为此,这项调查的目的是要了解工具界面摩擦和工具耙角度 对 形成和分布的残余应力和应变的机械加工零件 是 如何影响 的 ,并划分切割冷却过程分为四个阶段 并 调查的每个阶段的 用处 。有限 元方法用于模拟正交金属切削的过程 , 通过使用 ABAQUS 的通用代码中的几个高级的建模选项,制定了仿真程序。采用最新的拉格朗日制订适合大应变变形。假定平面应变条件。包括电源过压粘塑性本构模型与应变率效应。沿工具芯片界面摩擦接触已遵守修改库仑摩擦定律。 在 绝热加热条件 下,对 可塑性和摩擦所致的局部加热升温。基于应力的芯片分离建模标准 把 工件的芯片分离 ,被认为是依赖于温度的物质属性。这项研究提供了详细的博览会的不同阶段后切割、 应力、 应变场演化和形成的残余应力和工件的成品表面附近的 金相。 2.有限元模型描述 图 1 显示了金属正交切削过程, 是 其中一个连续的芯片正在从工件切削刀具相对于工件匀速移动的原理图。 在 芯片分离和对待摩擦的交互工具 -芯片 -工件系统中,定义了三个 相关关系。如图 1 所示。 接触面 1的切割路径,两个接触表面由两组节点 (每个面上一个) 粘合在一起并用配对。当 达到 芯片分离标准,工具提示的联系节点 距离 ,使该工具以增量方式推进。作为工具的联系节点对材料成形芯片 的 内面 , 将移动到所 接触面 2的 定义区域,和那些形成成品的工件表面将 移动到接触面 3,如图 1 所示。虽然 有接触面 2的 芯片和工具的前刀面之间的摩擦相互作用, 接触面 3 只用于维护工具提示新切工件表面的接触。 因为相比 与 平面维度的工件 , 被刀具 切削 的材料层的厚度通常是非常薄,声称是平面应变条件。由于其与芯片和工件的高刚度、 切割工具作为刚体理想化,建模的弹性材料与人工高杨氏模量 ( 2.1 1015 MPa 在此研究中使用的值)。 本节的其余部分描述了一些实施这项研究进行的金属切削模拟计算要点。 2.1.摩擦界面 沿 toolchip 界面的接触摩擦的影响 , 通过修改库仑摩擦法 (在 ABAQUS 中可用的选项) 建 立模型,。它指出在一个联系点的相对运动将发生是否应用 抗剪应力 t 相切的联系人界面到达下面定义的 tc 的临界摩擦剪应力 。 ),min(thc vp ( 1) 其中 p 是接触点处的正常压力、 n 是摩擦系数, t是阈值,剪应力。它指出,当 t设置为无穷大时,常规的库仑摩擦法收回。在此研究中,工件材料是 AISI 4340 钢,这是略高于材料的屈服应力在简单剪切。 图 1 金属切割与相关部分 2.2.能量耗散和局部加热 在金属切削过程中 , 在芯片和工件的塑料工作和沿 toolchip 摩擦工作接口局部加热造成的能量耗散。在高速切削,产生的热量已没有时间传导和由此产生的温度上升通常被视为 工件自身承受 。绝热加热条件下,局部温度升高, Tp,诱导塑料工作在时间间隔 t,可以写 为 JcptTp pep ( 2) J,相当于热转换因子, c 比热 、 密度, r 和塑料工作的百分比转化为热能的 hp (通常, 85%hp 95%; hp = 90%在此研究中 16,35)。 JcpstTff ( 3) 其中 t 是接触点处的剪应力、 s 是滑动速度, J, c 和 r 是界定的智商系数 hf 代表摩擦工作转化为热量,这作为这项研究的 1.0 的小数部分。沿工具芯片接口,产生 的总热量的一半 ( 50%) 假定走进芯片和另一半到工具。 2.3.芯片分离 在金属切削加工仿真 中 ,沿 切削 工具前小区域的应力和变形 区域, 芯片分离切割平面 , 满足某些芯片分离的判据。值得注意 的是 研究表明芯片的几何形状和应力应变场的分布不影响 。 在本研究中,用于控制芯片分离 的 临界应力 , 按照这一标准,在一 定距离的工具提示之前到达一个关键的组合芯片分离时发生应力状态。数学上,可以作为下面给定的应力索引 22 )()(ffnf ( 4) 沿切割的路径 , 剪切 力和 正常组件应力,工具提示指定距离处的应力状态 。 如图 1 所示是失 去 压力下纯材料的拉伸和剪切加载条件 下切削 。芯片分离发生时应力指数 f 达到工具提示前一个元素长度 (在这项研究的约 50.8 m) 的值。对于 AISI 4340材料钢, 临界 压力也就是 948 MPa 和 548 MPa (基于 von Mises 屈服的关系)。 2.4.材料模型 工件是 AISI 4340 材料钢 在 粘塑性本构模型建模 。 mop D )1( ( 5) 在一定电压下进行 适合高应变率应用程序 (如高速金属切削)。标准的常量值用于其他物理属性 (比热 c = 502.0 J/动量 K 和大规模密度 r = 7800 kg/m3)。在金属切削加工过程中产生的巨大热量将改变工件材料的材料特性。因此,依赖于温度的材料属性 (例如弹性常数、 初始屈服应力和热膨胀系数) 。 2.5.有限元网格和边界条件 图 2 显示了有限元离散化整个几何模型的工件 -芯片 -工具系统。芯片层由倾斜的元素 组成 , 它 们从工件中分离 ,在 交互的工具 切割 时 , 防止过度失真的元素。约 64 的倾角的倾斜元素与切削方向。该芯片切割的起始位置,一层芯片的右端是最初分隔从工件,以便顺利和快速过渡到稳定状态。左端,芯片层三角部分维持以使网格生成更简单和不可望对稳态仿真结果的影响。此网格设计是有效和原拟由 Strenkowski 和卡罗尔,并已经通过其他研究人员 的可肯定 图 2 所示的有限元网格由 1160个 四节点平面应变元 素与 1308 个 节点组成。 在预期大变形芯片中,网格的芯片图层是比工件更精细。具体而言,芯片层,其中有 254 m 的高度 (切削深度),分为十个二类油层的元素。该工件区域,其中有 2540年 m 的长度和高度 889 m ,分为 11 层,但每个有 50 个元素在切削方向。它被发现 50 个元素是 使用 频谱 -评价的有限元模拟, 在 切割工具到达 左 结尾之前以达到稳定状态。下方的切割路径元素的顶部五层细是维度 50.8 m 50.8 微米,这些是比工件网格的下半部分中的那些小方形内容与离散化。 图 2 金属切割网格层 工件边界条件的指定方式如下 : 因为下半部分中的工件材料可望接受很小的变形,工件的底部边界被认为具有零位移。由于工件是足够长,在实现 (忽略任何瞬变影响的开头和末尾的切割模拟) 稳态解的切割方向,左、 右两端的工件边界 和 切削方向被 限制 。 为了保持耙角度和刚性切割工具的间隙角,鉴于该工具 是 基长度 407 m ,高度 762 m 的平行四边形的形状。它由 60 大小相等平面应变元素组成。虽然该工具是在切割过程中与恒速负 x 方向移动,该工具的上边缘是始终限制在 y 方向在整个切割过程中。在 此研究中, n 的恒定的切削速度 = 2.54 m/s (为 152.4 米 /分钟) 。 Residual stresses and strains in orthogonal metal cutting C. Shet, X. Deng Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA Received 7 August 2002; received in revised form 29 October 2002; accepted 3 January 2003 Abstract The nite element method is used to simulate and analyze the orthogonal metal cutting process under plane strain conditions, with focus on the residual stress and strain elds in the nished workpiece. Various modeling options have been employed. The frictional interaction along the tool-chip interface is modeled with a modied Coulomb friction law. Chip separation is modeled by the nodal release technique based on a critical stress criterion. Temperature-dependent material properties and a range of tool rake angle and friction coefcient values are considered. It is found that while thermal cooling increases the residual stress level, the effects of the rake angle and the friction coefcient are nonlinear and depend on the range of these parameters. The predicted residual stress results compare well with experimental observations available in the literature. 2003 Elsevier Science Ltd. All rights reserved. Keywords: Finite element simulation; Orthogonal metal cutting; Residual stress 1. Introduction Machiningoperations such as orthogonal metal cut- ting are complex nonlinear and coupled thermomechan- ical processes. The complexities are due to large strain and high strain-rate in the primary shear zone and due to the contact and friction between the chip and tool along the secondary shear zone. In addition to the above, complexities are also caused by local heat generation through the conversion of plastic work in the chip during chip formation and the frictional work between the tool and chip. An undesired byproduct of the metal cutting process is the creation of residual stresses and strains in the freshly cut workpiece, which is known to affect theintegrity of the newly nished surface, including short-ened creep and fatigue lives of the machined componentunder service loads. Hence a careful assessment of theresidual stress and strain elds in the workpiece is neces-sary for optimizing the cutting process and for safe-guarding against the premature failure of machined partsunder creep and fatigue loading conditions.A signicant amount of metal-cutting research workhas been carried out in the past 60 years. Amongst theearliest work were analytical models developed by Mer-chant 1,2 and Piispanen 3 on the mechanics of metalcutting. These models are known as the shear-anglemodels in that they provide empirical relations betweenthe shear angle, the rake angle and the coefcient offriction. These models can also be used to estimateforces, stresses, strains, and energy consumption in themetal cutting process under plane strain conditions.More sophisticated shear-angle models were laterdeveloped to include the effect of various design para-meters. Lee and Shaffer 4 proposed a shear-anglemodel based on the slip-line eld theory, which assumesa rigid-perfectly plastic material behavior and a straightshear plane. Kudo 5 modied the slip-line model byintroducing a curved shear plane to account for the con-trolled contact between curved chip and straight toolface. Palmer and Oxley 6 and Oxley et al. 7 con-sidered viscoplastic conditions and included work hard-ening and strain-rate effects. Doyle et al. 8 studied theeffect of interfacial friction between the chip and thetool. Trigger and Chao 9 analyzed the effect of localheating in metal cutting. Among the various numerical techniques for studyingmetal cutting, the nite element method has been widelyapplied. The versatility of the nite element methodallows it to take into account large deformation, strainrate effect, tool-chip contact and friction, local heating and temperature effect, different boundary and loading conditions, and other phenomena encountered in metal cutting problems. Usui and Shirakashi 10 developedone of the early nite element models for metal cuttingbased on empirical data. They assumed a rate-inde-pendent deformation behavior for the material and a geo-metric criterion for chip separation in front of tool tip.Iwata et al. 11 proposed a FEM model for low-speedmetal cutting, which assumed rigid-plastic behavior forthe material and included the effect of friction betweenthe tool and the chip (but ignored the temperature effect).Strenkowski and Carroll 12 used the general-purposenite element code NIKE2D with the updated Lagrang-ian formulation. They used a chip separation criterionbased on the effective plastic strain in the workpiece.Carroll and Strenkowski 13, and Strenkowski andMoon 14 also developed nite element models basedon the Eulerian formulation. Komvopoulos and Erpen-beck 15 considered elastic-perfectly plastic materialsand materials with isotropic strain hardening and strain-rate sensitivity. The nite element analysis by Lin andLin 16 was based on a coupled thermo-elastic-plasticconstitutive model with large deformation and employeda strain energy density criterion for chip separation.Tyan and Yang 17 conducted a nite element study onthe orthogonal metal cutting process based on a limitanalysis theorem in the context of an optimal theory andthe Eulerian reference system. Shih and Yang 18 andShih 19,20,21 carried out both experimental and niteelement studies on orthogonal metal cutting. Morerecently, Shet and Deng 22 and Shi et al. 23 studiedorthogonal metal cutting using a general-purpose niteelement code and investigated the effect of friction andtool rake angle on the distribution of thermomechanicaleld quantities. These studies have been compared withexperimental data in the literature and with new testresults obtained by their collaborators (see Deng andShet 24 and Zehnder et al. 25). The analytical and numerical studies discussed above have provided a good understanding of the metal cuttingprocess. In particular, these studies have covered issuessuch as large strains and strain rates, the steady-stateresponse, the effect of friction and local heating and thechip separation criteria. It appears, however, that notmuch computational work has been carried out to under-stand issues relevant to the surface integrity ofmachined parts Residual stresses are known to cause poor surface integrity. Henriksen 26 conducted a series of tests to understand residual stresses in the machined surface of steel and cast iron parts under various cutting conditions. He reported that residual stresses could be as high as 689.48 MPa (100 ksi). He also found that residual stresses were usually tensile in ductile materials (e.g. carbon steel) and compressive in brittle materials (e.g. cast iron). Various reasons have been attributed to the cause of residual stresses in the workpiece. Liu and Bar- ash 27 observed that the mechanical deformation of the workpiece surface induced residual stresses. Kono et al. 28 and Tonsoff et al. 29 revealed that residual stresses are dependent on the cutting speed. Matsumoto et al. 30 and Wu and Matsumoto 31 observed that the hardness of the workpiece material has a signicant inuence on the residual stress eld. Konig et al. 32 showed that friction in metal cutting also contributes to the formation of residual stresses. Field et al. 33 reviewed various methods for determining the surface integrity of machined parts, such as micro-hardness evaluation, X-ray diffraction, and layer removal-deec- tion techniques. An early analytical model for predicting residual stresses was proposed by Okushima and Kakino 34, in which residual stresses were related to the cutting force and temperature distribution during machining. In another analytical model (Wu and Matsumoto 31) a connection was made between residual stresses and the hardness of the workpiece. Shih and Yang 18 conduc- ted a combined experimental/computational study of the distribution of residual stresses in a machined workpiece. More recently, Liu and Guo 35 used the nite element method to evaluate residual stresses in a workpiece. They also observed that the magnitude of residual stress reduces when a second cut is made on the cut surface. While existing studies on residual stresses in machined parts have provided important insights, issues such as residual strain distributions, the effect of tool rake angle, the level of contribution from each stage of the cutting-cooling process, are still not well understood. To this end, the objective of this investigation is to understand how the tool-chip interfacial friction and the tool rake angle affect the formation and distribution of residual stresses and strains in machined parts, and div- ide the cutting-cooling process into four stages and investigate the contribution of each stage. The nite element method is used to simulate the orthogonal metal cutting process. A simulation procedure has been developed through the use of several advanced modeling options in the general-purpose code ABAQUS 36. An updated Lagrangian formulation suitable for large strain deformations is employed. Plane strain conditions are assumed. Strain-rate effects are included with an over- stress viscoplastic constitutive model. Frictional contact along the tool-chip interface is made to obey a Modied Coulomb Friction Law. Adiabatic heating conditions are used to account for temperature rise due to local heating induced by plasticity and friction. Chip separation from the workpiece is modeled using a stress-based chip sep- aration criterion. Temperature-dependent material properties are considered. This study provides a detailed exposition of stress and strain eld evolution at different stages after cutting, and of the formation of residual stresses and strains near the nished surface of the work- piece. 2. Finite element model description Fig. 1 shows a schematic diagram of the orthogonal metal cutting process, in which a continuous chip is being taken off from the workpiece by a cutting tool that is moving relative to the workpiece with a constant velo- city In order to model chip separation and treat frictional interactions in the tool-chip-workpiece system, three contact pairs are dened, as shown in Fig. 1. Contact Pair 1 denes the cutting path, where the two contact surfaces are represented by two sets of nodes (one on each surface) that are paired and bonded together. When the chip separation criterion is satised, the contact node pair immediately ahead of the tool tip is separated, enabling the tool to advance incrementally. As the tool breaks the contact node pairs, materials forming the chips inner face will move into the region dened by Contact Pair 2, and those forming the nished work-piece surface will move into the region of Contact Pair 3, as illustrated in Fig. 1. While Contact Pair 2 models the frictional interaction between the chip and tools rake face, Contact Pair 3 is used only to maintain tool tip contact with the newly cut surface of the workpiece. Because the thickness of the layer of material being removed by the cutting tool is usually very thin com-pared to the out-of-plane dimension of the workpiece,the plane strain condition is claimed. Due to its highstiffness relative to the chip and workpiece, the cuttingtool is idealized as a rigid body and is modeled as anelastic material with an articially high Youngs modu-lus (a value of 2.1 1015 MPa is used in this study).The rest of this section describes some of the keycomputational elements implemented in this study inorder to carry out the metal cutting simulations. 2.1. Interfacial friction To model the effect of contact friction along the tool-chip interface, a Modied Coulomb Friction Law (anoption available in ABAQUS) is adopted. It states thatrelative motion at a contact point will occur if theapplied shear stresst tangent to the contact interfacereaches the critical frictional shear stresstc dened below t c min( np,t th) (1) where p is the normal pressure at the contact point, n is the coefcient of friction, and t th is a threshold shear stress value. It is noted that, when t th is set to innity, the conventional Coulomb Friction Law is recovered. In this study, the workpiece material is AISI 4340 steel and t th is taken to be 549 M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论