



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题升级训练15椭圆、双曲线、抛物线(时间:60分钟满分:100分)一、选择题(本大题共6小题,每小题6分,共36分)1(2012安徽安庆二模,2)在同一坐标系下,下列曲线中,右焦点与抛物线y24x的焦点重合的是()a1 b1c1 d12已知圆的方程为x2y24,若抛物线过定点a(0,1),b(0,1),且以该圆的切线为准线,则抛物线焦点的轨迹方程是()a1(y0) b1(y0)c1(x0) d1(x0)3若点p为共焦点的椭圆c1和双曲线c2的一个交点,f1,f2分别是它们的左、右焦点,设椭圆的离心率为e1,双曲线的离心率为e2.若0,则()a1 b2 c3 d44若直线mxny4与圆x2y24没有交点,则过点p(m,n)的直线与椭圆1的交点个数为()a至少1个 b2个c1个 d0个5已知点a,b是双曲线x21上的两点,o为坐标原点,且满足0,则点o到直线ab的距离等于()a bc2 d26(2012山东潍坊3月模拟,10)直线4kx4yk0与抛物线y2x交于a,b两点,若|ab|4,则弦ab的中点到直线x0的距离等于()a b2 c d4二、填空题(本大题共3小题,每小题6分,共18分)7(2012江苏苏、锡、常、镇四市调研,8)已知点m与双曲线1的左,右焦点的距离之比为23,则点m的轨迹方程为_8已知抛物线y22px(p0)上一点m(1,m),到其焦点的距离为5,双曲线x21的左顶点为a,若双曲线的一条渐近线与直线am垂直,则实数a_.9连接抛物线x24y的焦点f与点m(1,0)所得的线段与抛物线交于点a,设点o为坐标原点,则oam的面积为_三、解答题(本大题共3小题,共46分解答应写出必要的文字说明、证明过程或演算步骤)10(本小题满分15分)(2012河北邯郸一模,20)已知椭圆c:1(ab0)的短轴长等于焦距,椭圆c上的点到右焦点f的最短距离为1.(1)求椭圆c的方程;(2)过点e(2,0)且斜率为k(k0)的直线l与c交于m,n两点,p是点m关于x轴的对称点,证明:n,f,p三点共线11(本小题满分15分)如图,椭圆c:1的焦点在x轴上,左、右顶点分别为a1,a,上顶点为b.抛物线c1,c2分别以a,b为焦点,其顶点均为坐标原点o,c1与c2相交于直线yx上一点p.(1)求椭圆c及抛物线c1,c2的方程;(2)若动直线l与直线op垂直,且与椭圆c交于不同两点m,n,已知点q(,0),求的最小值12(本小题满分16分)(2012安徽安庆二模,20)已知直线l:xy80,圆o:x2y236(o为坐标原点),椭圆c:1(ab0)的离心率为e,直线l被圆o截得的弦长与椭圆的长轴长相等(1)求椭圆c的方程;(2)过点(3,0)作直线l,与椭圆c交于a,b两点,设(o是坐标原点),是否存在这样的直线l,使四边形oasb的对角线长相等?若存在,求出直线l的方程;若不存在,说明理由参考答案一、选择题1d2c解析:过点a,b,o(o为坐标原点)分别向抛物线的准线作垂线,垂足为a1,b1,o1,设抛物线的焦点f(x,y),则|fa|aa1|,|fb|bb1|,|fa|fb|aa1|bb1|.o为ab的中点,|aa1|bb1|2|oo1|4.|fa|fb|4,故点f的轨迹是以a,b为焦点的椭圆,其方程为1.又f点不能在y轴上,故所求轨迹方程为1(x0)故选c.3b解析:设椭圆方程为1(ab0),双曲线方程为1(m0,n0),其中两焦点距离为2c.不妨令p在第一象限,由题意知|pf1|am,|pf2|am,又,pf1pf2,|pf1|2|pf2|2|f1f2|2,2(a2m2)4c2,2,故选b.4b解析:直线mxny4与圆x2y24没有交点,圆心到直线的距离d2,解得m2n24,即点p(m,n)在以原点为圆心,半径为2的圆的内部,而此圆在椭圆1的内部,故点p在椭圆内部,经过此点的任意直线与椭圆有两个交点故选b.5a解析:由0oaob,由于双曲线为中心对称图形,因此可考查特殊情况,令点a为直线yx与双曲线在第一象限的交点,因此点b为直线yx与双曲线在第四象限的一个交点,因此直线ab与x轴垂直,点o到直线ab的距离就为点a或点b的横坐标的值由x.故选a.6c解析:据抛物线定义知,|ab|x1x24,x1x2.故弦ab的中点到x的距离为.二、填空题7x2y226x250解析:由题意得a216,b29,c216925.f1(5,0),f2(5,0)设m(x,y),有,即,整理即可得解8解析:根据抛物线的性质得15,p8.不妨取m(1,4),则am的斜率为2,由已知得21.故a.9解析:线段fm所在直线方程xy1与抛物线交于a(x0,y0),则y032或y032(舍去)soam1(32).三、解答题10(1)解:由题可知解得a,c1,b1.椭圆c的方程为y21.(2)证明:设直线l为yk(x2),m(x1,y1),n(x2,y2),p(x1,y1),f(1,0),由得(2k21)x28k2x8k220.所以x1x2,x1x2.而(x21,y2)(x21,kx22k),(x11,y1)(x11,kx12k)(x11)(kx22k)(x21)(kx12k)k2x1x23(x1x2)4k0,.n,f,p三点共线11解:(1)由题意得a(a,0),b(0,),故抛物线c1的方程可设为y24ax,c2的方程为x24y.由所以椭圆c:1,抛物线c1:y216x,抛物线c2:x24y.(2)由(1)知,直线op的斜率为,所以直线l的斜率为,设直线l的方程为yxb.由消去y,整理得5x28bx8b2160,因为动直线l与椭圆c交于不同两点,所以128b220(8b216)0,解得b.设m(x1,y1),n(x2,y2),则x1x2,x1x2,y1y2x1x2(x1x2)b2.因为(x1,y1),(x2,y2),所以(x1,y1)(x2,y2)x1x2(x1x2)y1y22.因为b,所以当b时,取得最小值,其最小值为.12解:(1)圆心o到直线l:xy80的距离为d4,直线l被圆o截得的弦长2a24,a2.又,a2b2c2,解得b1,c.椭圆c的方程为y21.(2),四边形oasb是平行四边形假设存在这样的直线l,使四边形oasb的对角线长相等则四边形oasb为矩形,因此有,设a(x1,y1),b(x2,y2),则x1x2y1y20.直线l的斜率显然存在,设过点(3,0)的直线l方程为yk(x3),由得(14k2)x224k2x36k
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (2025年标准)消防意向协议书
- (2025年标准)支持wifi协议书
- 市场合作协议规范文本2024
- 商业供货协议与质量保证条款
- 聚焦2025:精神心理健康医疗服务供给能力与需求增长研究报告
- 2025年互联网信息服务项目规划申请报告
- 2025年碳交易市场项目立项申请报告模范
- 娱乐行业面试实战题库
- 房地产销售部工作总结(12篇)
- 2025年网络工程师考试互联网协议与网络技术试卷
- 上海宝山区区属国有(集体)企业招聘笔试题库2025
- 挂靠公司免责协议书
- 小学生植物知识科普课件
- 螺钉产品追溯管理制度
- 应用高等数学教学教案
- JJG 579-2025验光镜片箱检定规程
- 2025年云南省建筑行业安全员A证理论考试练习题(100题)含答案
- 社会福利 课件全套 高和荣 第1-11章 绪论-社会福利的挑战
- 系统工程师工作总结
- 2025届上海市(春秋考)高考英语考纲词汇对照表清单
- 合同延期协议模板
评论
0/150
提交评论