



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
优秀领先 飞翔梦想 成人成才第十七章 勾股定理17.1 勾股定理第2课时 勾股定理的应用学习目标:1会用勾股定理进行简单的计算,能运用勾股定理在数轴上画出表示无理数的点,进一步领会数形结合的思想;2勾股定理的实际应用,树立数形结合的思想、分类讨论思想;学习重点:勾股定理的简单计算.学习难点:勾股定理的灵活运用.学习过程一、自学导航(课前预习)1、直角三角形性质有:如图,直角ABC的主要性质是:C=90,(用几何语言表示)ACB(1)两锐角之间的关系: ;(2)若B=30,则B的对边和斜边: ;(3)直角三角形斜边上的 等于斜边的 。(4)三边之间的关系: 。(5)已知在RtABC中,B=90,a、b、c是ABC的三边,则c= 。(已知a、b,求c)a= 。(已知b、c,求a)b= 。(已知a、c,求b).2、(1)在RtABC,C=90,a=3,b=4,则c= 。(2)在RtABC,C=90,a=6,c=8,则b= 。(3)在RtABC,C=90,b=12,c=13,则a= 。2、 合作交流(小组互助)BC1m 2mA实际问题数学模型 例1:一个门框的尺寸如图所示若薄木板长3米,宽2.2米呢? 例2、如图,一个3米长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.5米如果梯子的顶端A沿墙下滑 0.5米,那么梯子底端B也外移0.5米吗?(计算结果保留两位小数)分析:要求出梯子的底端B是否也外移0.5米,实际就是求BD的长,而BD=OD-OBOBDCACAOBOD例3:用圆规与尺子在数轴上作出表示的点,并补充完整作图方法。步骤如下:1在数轴上找到点A,使OA ;2作直线l垂直于OA,在l上取一点B,使AB ;3以原点O为圆心,以OB为半径作弧,弧与数轴交于点C,则点C即为表示的点分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。如图,已知OA=OB, (1)说出数轴上点A所表示的数(2)在数轴上作出对应的点BAC (三)展示提升(质疑点拨)1、一个高1.5米、宽0.8米的长方形门框,需要在其相对的顶点间用一条木条加固,则需木条长为 。第2题2、从电杆离地面5m处向地面拉一条长为7m的钢缆,则地面钢缆A到电线杆底部B的距离为 。3、有一个边长为50dm的正方形洞口,想用一个圆盖盖住这个洞口,圆的直径至少为 (结果保留根号)4、一旗杆离地面6m处折断,其顶部落在离旗杆底部8m处,则旗杆折断前高 。如下图,池塘边有两点A,B,点C是与BA方向成直角的AC方向上一点测得CB60m,AC20m,你能求出A、B两点间的距离吗?AEBDC5、如图,滑杆在机械槽内运动,ACB为直角,已知滑杆AB长100cm,顶端A在AC上运动,量得滑杆下端B距C点的距离为60cm,当端点B向右移动20cm时,滑杆顶端A下滑多长?6、你能在数轴上找出表示的点吗?请作图说明。(四)达标检测1、若等腰三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 ( ) A、12 cm B、10 cm C、8 cm D、6 cm2、若等腰直角三角形的斜边长为2,则它的直角边的长为 ,斜边上的高的长为 。3、如图,在ABC中,ACB=900,AB=5cm,BC=3cm,CDAB与D。求:(1)AC的长; (2)ABC的面积; (3)CD的长。 4、在数轴上作出表
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水生动物行为生态学-洞察及研究
- 浙江工商大学杭州商学院《土壤肥料学通论实验》2023-2024学年第二学期期末试卷
- 电子科技大学中山学院《界面交互设计》2023-2024学年第二学期期末试卷
- 铁门关职业技术学院《工程力学A(1)》2023-2024学年第二学期期末试卷
- 山西农业大学《色彩鉴赏与创意(文史类)》2023-2024学年第二学期期末试卷
- 重庆文理学院《色彩与造型》2023-2024学年第二学期期末试卷
- 光致储能材料-洞察及研究
- 虚拟现实品牌应用-洞察及研究
- 之江知识竞赛题库及答案
- 针灸推拿考试试题及答案
- 修理工安全试题及答案
- 地面地砖检修方案(3篇)
- 公司工会内控管理制度
- 水发能源考试题及答案
- 2025年一年级语文1-8单元期末考试复习基础知识点默写清单(有答案)
- 2025年重症医学科ICU护理质量控制计划
- 食堂燃气培训试题及答案
- 产业协同创新对制造业升级的促进机制研究
- 2025陕西中考:语文必考知识点
- 泥浆消纳协议书
- 2025-2030北京市大健康产业发展决策及未来经营模式战略规划研究报告
评论
0/150
提交评论