


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
15.5.因式分解(教学设计)一、教学目标:1知识与技能: 使学生理解因式分解的意义,了解公因式以及提公因式的方法,并能够熟练地运用提公因式法对多项式进行因式分解。2过程与方法:通过体会公因式及提公因式法,树立全面分析问题、认识问题的思想,提高观察能力、分析问题及逆向思维的能力。 3情感态度与价值观 : 通过参与教学活动,获取完成解题后的成就感,品味学习数学的乐趣,激发学生学习数学的兴趣。 二、教学重难点:重点:理解因式分解的含义及运用提取公因式法分解因式。难点:理解整式的乘法与因式分解的关系,知道利用整式的乘法的逆向思维求解因式分解。三、教学过程:1新课导入:忆一忆:235=30 (整数乘法)30=235 (因数分解)x(x+y)=x2+xy (整式乘法)x2+xy =x(x+y) (?)因式分解在小学我们知道,像235=30这样把几个整数的乘积写成一个整数的形式,这种形式我们把它叫做整数乘法,而反过来,把一个整数分解为几个因数的乘积,我们把它叫做因数分解。在本章第二节我们知道x(x+y)=x2+xy是整式乘法而把这个等式反过来,根据类比的方法,可以得出x2+xy =x(x+y)应该叫因式分解。 2讲授新课:等式x2+xy =x(x+y)是把一个多项式化成了几个整式的积的形式,因而得出因式分解的定义:因式分解:把一个多项式化成了几个整式的积的形式。x(x+y)=x2+xy (整式乘法)x2+xy =x(x+y) (因式分解)由这两个式子可得出因式分解和整式乘法的关系:因式分解整式乘法 由此,我们不难看出,因式分解与整式乘法是互逆的。x2+xy =x(x+y) (因式分解)观察这个等式左边的多项式x2+xy可以发现这个多项式中每一个项都含有一个相同的因式x,由此可得出公因式的定义:公因式:多项式中每一个项都含有的因式。这个多项式因式分解的过程,实际上是从这个多项式中提出它的公因式x,就化成了两个整式的积,其中一个整式为它的公因式,另一个整式为多项式与公因式的商,从而得出提公因式法的概念:提公因式法:在因式分解过程中,先找到这个多项式的公因式,再将原式除以公因式,得到一个新多项式,然后将这个多项式与公因式相乘即可。进而得出提公因式法因式分解的一般步骤:提公因式法一般步骤: 1、找到多项式的公因式. 2、提出多项式的公因式.接下来,给同学们精讲三个例题,试着通过找这三个多项式的公因式,让学生自己探索、归纳出找公因式的方法。【例题精讲】找出下列多项式的公因式,再进行因式分解。.7a2b2c+14ab2 7ab2.-15xyz3+9y3z2 3yz2.12u3v2-4u2v2+4uv2 4uv2由此归纳出找公因式的方法:1、系数找多项式各项系数的最大公因数2、字母找多项式各项的相同字母,并取最低次数然后再对这三个多项式进行因式分解:7a2b2c+14ab2=7ab2ac+7ab22=7ab2(ac+2) 公因式提取要彻底-15xyz3+9y3z2 =-(15xyz3-9y3z2)=-(3yz25xz-3yz23y2)=-3yz2(5xz-3y2)首项为负先提负12u3v2-4u2v2+4uv2=4uv23u2-4uv2u+4uv21=4uv2(3u2-u+1)提取公因式莫漏1【做一做】因式分解:让同学们在课堂做上面这两道题。 3课堂小结:1因式分解,公因式?因式分解:多项式化成了几个整式的积公因式:多项式中每一个项都含有的因式2确定多项式的公因式:.多项式各项系数最大公因数 .各项的相同字母,取最低次数 3、提公因式法因式分解步骤:.找公因式.提公因式4、用提公因式法分解因式应注意的问题:.公因式提取要彻底, .首项为负先提负,.提取公因式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 晨光文具店营销方案策划
- 提供建筑方案设计流程
- 学校师德师风建设工作五年规划
- 建筑工程施工现场消防安全方案
- 员工培训管理实施细则
- 建筑方案设计前期分析论文
- 营销推广方案服装店文案
- 2025年注册会计师(CPA)考试 企业并购重组科目冲刺押题试卷及重点解读
- 精密机械行业分析报告
- 《函数的概念与性质》九年级数学代数教学方案
- 时文语法填空-电影篇 《731》 《长安的荔枝》 《戏台》
- 主题一 2. 设计节电方案(课件) 综合实践活动教科版五年级上册
- 2025年幼师教材考试题目及答案
- 中医备案诊所管理办法
- 2025年高校教师资格证考试题库(附答案)
- 2025年家庭健康管理师考试模拟题及答案
- (康德卷) 重庆市2026届高三9月开学考联考英语试卷(含答案解析)
- 2025江苏省旅游发展研究中心自主招聘4人考试参考试题及答案解析
- 绿化施肥基本知识培训课件
- 选调生培训课件
- 安全驾驶教育培训课件
评论
0/150
提交评论