离散型随机变量的分布列 (2).doc_第1页
离散型随机变量的分布列 (2).doc_第2页
离散型随机变量的分布列 (2).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.1.2离散型随机变量的分布列一、教学目标1、理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列;2、掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题3. 理解二点分布的意义.二、预习自测:问题一:(1)抛掷一枚骰子,可能出现的点数有几种情况?(2)姚明罚球2次有可能得到的分数有几种情况?(3)抛掷一枚硬币,可能出现的结果有几种情况?思考:在上述试验开始之前,你能确定结果是哪一种情况吗?随机变量是如何定义的?分析:不行,虽然我们能够事先知道随机试验可能出现的结果,但是一般情况下,试验的结果是随机出现的。启发学生:掷一枚硬币,可能出现正面向上、反面向上两种结果虽然这个随机试验的结果不具有数量性质,但可以将结果于数字建立对应关系 在让学生体会到掷骰子的结果与出现的点数有对应关系后,也能创造性地提出用数字表示掷一枚硬币的结果比如可以用1表示正面向上的结果,用0表示反面向上的结果也可以分别用1、2表示正面向上与反面向上的结果问题二:按照我们的定义,所谓的随机变量,就是随机试验的试验结果与实数之间的一个对应关系。那么,随机变量与函数有类似的地方吗?引导学生回顾函数的理解: 实数函数实数 在引导学生类比函数的概念,提出对随机变量的理解:随机试验的结果随机变量实数 师生讨论交流归纳出结论:随机变量和函数都是一种映射,函数把实数映为实数,随机变量把随机试验的结果映为实数,在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域 我们把随机变量的取值范围叫做随机变量的值域 因此掷一枚硬币的试验中,随机变量的值域可以为0,1或1,2问题三:下列试验的结果能否用离散型随机变量表示?为什么?(1)已知在从汕头到广州的铁道线上,每隔50米有一个电线铁站,这些电线铁站的编号;(2)任意抽取一瓶某种标有2500ml的饮料,其实际量与规定量之差;(3)某城市1天之内的温度;(4)某车站1小时内旅客流动的人数;(5)连续不断地投篮,第一次投中需要的投篮次数.(6)在优、良、中、及格、不及格5个等级的测试中,某同学可能取得的等级。导学案重点:离散型随机变量的分布列的意义及基本性质.难点:分布列的求法和性质的应用.1引导学生归纳随机变量的定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示在这个对应关系下,数字随着试验结果的变化而变化像这种随着试验结果变化而变化的变量称为随机变量 随机变量常用字母X、Y、来表示 2离散型随机变量的分布列(1)设离散型随机变量X可能取的值为,X取每一个值的概率,则表称为随机变量X的概率分布,简称X的分布列。x5x4x3x2x1PO离散型随机变量的概率分布还可以用条形图表示,如图所示。离散型随机变量的分布列具有以下两个性质:对于随机变量的任何取值x ,其概率值都是非负的,即P 0,i = 1,2,;对于随机变量的所有可能的取值,其相应的概率之和都是1,即P + P + = 1(2)二点分布:像这样的分布列叫做两点分布列。如果随机变量X的分布列为两点分布列,就称X服从两点分布,而称为。1pXP01p(1),概率之和为。在教学过程中发现学生在学习完超几何分布和二项分布以后,学生不能正确的理解好什么是超几何分布(古典概型利用组合数计数)、什么是二项分布(利用独立性,互斥性)及其区别.下面我通过几个例子说明一下两者的区别 超几何分布:在产品质量的不放回抽检中,若N件产品中有M件次品,抽检n件时所得次品数X=k则pX=K=MkN-Mn-kNn此时我们称随机变量X服从超几何分布1)超几何分布的模型是不放回抽样 2)超几何分布中的参数是M,N,n 上述超几何分布记作XH(n,M,N)。 二项分布:,即重复n次的伯努力试验, 在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布就是伯努利试验。 用表示随机试验的结果. 如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生k次的概率是PX=K=nkpk1-pn-k=bk;n,p 人们把x服从n,p的二项分布记做xB(n,p)。 三、典例解析:例1在抛掷一枚图钉的随机试验中,令 如果针尖向上的概率为p,试写出随机变量X的概率分布变式训练 从装有6只白球和4只红球的口袋中任取一只球,用X表示“取到的白球个数”,即求随机变量X的概率分布。例2 掷一枚骰子,所掷出的点数为随机变量X:(1)求X的分布列;(2)求“点数大于4”的概率;(3)求“点数不超过5”的概率。结论:变式训练 盒子中装有4个白球和2个黑球,现从盒中任取4个球,若X表示从盒中取出的4个球中包含的黑球数,求X的分布列.例3已知随机变量X的概率分布如下:X-1-0.501.83P0.10.20.10.3a求: (1)a; (2)P(X0);(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论